Journal of the American Chemical Society
Article
(3) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243−251.
(4) (a) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.;
Schrock, R. R. J. Am. Chem. Soc. 1998, 120, 4041−4042. (b) La, D. S.;
Alexander, J. B.; Cefalo, D. R.; Graf, D. D.; Hoveyda, A. H.; Schrock,
R. R. J. Am. Chem. Soc. 1998, 120, 9720−9721. An earlier case
involving related kinetic resolution processes promoted by different
type of chiral Mo complexes was reported to proceed with low
enantioselectivity (up to krel = 2.5 vs >50 in ref 4a); see: (c) Fujimura,
O.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 2499−2500.
(5) For reviews on catalytic enantioselective olefin metathesis, see:
(a) Hoveyda, A. H.; Schrock, R. R. Chem. − Eur. J. 2001, 7, 945−950.
(b) Ref 1a. (c) Hoveyda, A. H. In Handbook of Metathesis; Grubbs, R.
H., Ed.;Wiley−VCH: Weinheim, Germany, 2003; Vol. 2, pp 128−150.
(d) Hoveyda, A. H.; Malcolmson, S. J.; Meek, S. J.; Zhugralin, A. R. In
Metathesis in Natural Product Synthesis; Cossy, J.; Arseniyadis, S.;
Meyer, C., Eds.;Wiley−VCH: Weinheim, Germany, 2010; pp 343−
348.
(6) For Mo-catalyzed enantioselective ring-opening/cross-metathesis
(EROCM) reactions, see: (a) La, D. S.; Ford, J. G.; Sattely, E. S.;
Bonitatebus, P. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
1999, 121, 11603−11604. (b) La, D. S.; Sattely, E. S.; Ford, J. G.;
Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 7767−
7778. (c) Cortez, G. A.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2007, 46, 4534−4538. For a comparison of Mo- and Ru-based
EROCM processes, see: (d) Cortez, G. A.; Baxter, C. A.; Schrock,
R. R.; Hoveyda, A. H. Org. Lett. 2007, 9, 2871−2874.
(12) (a) Weeresakare, G. M.; Liu, Z.; Rainier, J. D. Org. Lett. 2004, 6,
1625−1627. (b) Liu, Z.; Rainier, J. D. Org. Lett. 2005, 7, 131−133.
(13) (a) Singh, R.; Schrock, R. R.; Muller, P.; Hoveyda, A. H. J. Am.
̈
Chem. Soc. 2007, 129, 12654−12655. (b) Malcolmson, S. J.; Meek,
S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456,
933−937. For an overview regarding the potential utility of this
catalyst classin chemical synthesis, see: ref 1i.
(14) Sattely, E. S.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. R.;
Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 943−953.
(15) (a) Lee, Y.-J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2009, 131, 10652−10661. (b) Zhao, Y.; Hoveyda, A. H.; Schrock,
R. R. Org. Lett. 2011, 13, 784−787.
(16) Ibrahem, I.; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem.
Soc. 2009, 131, 3844−3845.
(17) (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2009, 131, 16630−16631. (b) Marinescu, S. C.; Schrock,
R. R.; Muller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011,
̈
30, 1780−1782.
(18) (a) Marinescu, S.; Schrock, R. R.; Muller, P.; Hoveyda, A. H.
̈
J. Am. Chem. Soc. 2009, 131, 10840−10841. (b) Marinescu, S. C.;
Levine, D. S.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem.
Soc. 2011, 133, 11512−11514.
(19) Meek, S. J.; O’Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda,
A. H. Nature 2011, 471, 461−466.
(20) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock,
R. R.; Hoveyda, A. H. Nature 2011, 479, 88−93.
(21) For an example where the product from an E-selective EROCM
reaction with styrene is functionalized en route to the total synthesis of
a natural product, see ref 8.
(7) For Ru-catalyzed EROCM reactions developed in these labo-
ratories, see: (a) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury,
J. S.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 4954−4955.
(b) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka,
O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 12502−12508.
(c) Gillingham, D. G.; Kataoka, O.; Garber, S. B.; Hoveyda,
A. H. J. Am. Chem. Soc. 2004, 126, 12288−12290. For Ru-catalyzed
EROCM reactions developed in other laboratories, see: (d) Berlin,
J. M.; Goldberg, S. D.; Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45,
(22) See the Supporting Information for details.
(23) Synthesis of the diiodoaryl alcohol involves protection of the
dibromo-diol as bis(methoxymethyl)ether, metal−halogen exchange
(n-BuLi) followed by treatment with I2, removal of the MOM groups,
and installation of a TBS group.
(24) For an example of catalyst deactivation by a resident Lewisbasic
functional group in a Mo-catalyzed olefin metathesis reactionand
relevant spectroscopic data regarding the chelated complex, see:
Sattely, E. S.; Cortez, G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda,
A. H. J. Am. Chem. Soc. 2005, 127, 8526−8533.
7591−7595. (e) Tiede, S.; Berger, A.; Schlesiger, D.; Rost, D.; Luhl,
̈
A.; Blechert, S. Angew. Chem., Int. Ed. 2010, 49, 3972−3975.
(f) Kannenberg, A.; Rost, D.; Eibauer, S.; Tiede, S.; Blechert, S.
Angew. Chem., Int. Ed. 2011, 50, 3299−3302.
(25) Minimal amounts of benzene are needed to transfer the catalyst
solution; see the Supporting Information for details.
(8) Gillingham, D. G.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2007,
46, 3860−3864.
(26) (a) Christophers, J.; Baro, A., Eds. Quaternary Stereocenters:
Challenges and Solutions for Organic Synthesis; Wiley−VCH: Weinheim,
2006. (b) Das, J. P.; Marek, I. Chem. Commun. 2011, 47, 4593−4623.
(27) For catalytic enantioselective vinyl additions to α,β-unsaturated
ketones, see: (a) Duursma, A.; Boiteau, J.-G.; Lefort, L.; Boogers, J. A.
F.; de Vries, A. H. M.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L.
J. Org. Chem. 2004, 69, 8045−8052. (b) May, T. L.; Dabrowski, J. A.;
Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 736−739. For a recent
review on catalytic enantioselective conjugate additions, see: (c) Alexakis,
(9) For catalytic enantioselective ring-closing metathesis reactions
involving enol ethers and chiral Mo-diolate complexes, see: Lee, A.-L.;
Malcolmson, S. J.; Puglisi, A.; Schrock, R. R.; Hoveyda, A. H. J. Am.
Chem. Soc. 2006, 128, 5153−5157. For notable applications of RCM
reactions involving enol ethers in the context of complex molecule
total synthesis, see: (b) Nicolaou, K. C.; Postema, M. H. D.;
Claiborne, C. F. J. Am. Chem. Soc. 1996, 118, 1565−1566.
(c) Nicolaou, K. C.; Postema, M. H. D.; Yue, E. W.; Nadin, A.
J. Am. Chem. Soc. 1996, 118, 10335−10336. (d) Clark, S. J.; Kettle,
J. G. Tetrahedron 1999, 55, 8231−8248. (e) Rainier, J. D.; Allwein,
S. P.; Cox, J. M. J. Org. Chem. 2001, 66, 1380−1386. (f) Johnson,
H. W. B.; Majumder, U.; Rainier, J. D. J. Am. Chem. Soc. 2005, 127,
848−849. (g) Liu, L.; Postema, M. H. D. J. Am. Chem. Soc. 2001, 123,
A.; Backvall, J. E.; Krause, N.; Pam
108, 2796−2823.
̀
ies, O.; Dieg
́
uez, M. Chem. Rev. 2008,
̈
(28) For representative reports regarding epoxidation reactions of
enol ethers, see: (a) Stevens, C. L.; Tazuma, J. J. Am. Chem. Soc. 1954,
76, 715−717. (b) Schreiber, S. L.; Hoveyda, A. H.; Wu, H.-J. J. Am.
Chem. Soc. 1983, 105, 660−661. (c) Troisi, L.; Cassidei, L.; Lopez, L.;
Mello, R.; Curci, R. Tetrahedron Lett. 1989, 30, 257−260.
8602−8603. (h) Oliver, S. F.; Hogenauer, K.; Simic, O.; Antonello, A.;
̈
Smith, M. D.; Ley, S. V. Angew. Chem., Int. Ed. 2003, 42, 5996−6000.
(i) Iyer, K.; Rainier, J. D. J. Am. Chem. Soc. 2007, 129, 12604−12605.
(j) Nicolaou, K. C.; Gelin, C. F.; Seo, J. H.; Huang, Z.; Umezawa, T.
J. Am. Chem. Soc. 2010, 132, 900−9907. (k) Nicolaou, K. C.; Baker,
T. M.; Nakamura, T. J. Am. Chem. Soc. 2011, 133, 220−226.
(29) Evans, D. A.; Johnson, J. S.; Olhava, E. J. J. Am. Chem. Soc. 2000,
122, 1635−1649.
(30) Reversibility in a catalytic enantioselective reaction leads to
erosion of enantiomeric purity, since the minor enantiomer undergoes
the reverse process less readily than the major product isomer (larger
activation barrier to minor isomer translates to a higher activation
energy for the backward reaction as well). As a result, every time the
major enantiomer is converted to the starting material and the
enantioselective transformation takes place, a certain amount of the
minor enantiomer is again formed. Repetition of this sequence leads to
eventual generation of racemic product. Thus, a catalytic enantio-
selective reaction that is more highly selective (i.e., the barrier for
(10) For an intermolecular enyne metathesis involving an enol ether,
see: (a) Giessert, A. J.; Brazis, N. J.; Diver, S. T. Org. Lett. 2003, 5,
3819−3822.
For a ring-opening/ring-closing metathesis process
where one alkene is an enol ether, see: (b) Quinn, K. J.; Curto, J. M.;
Faherty, E. E.; Cammarano, C. M. Tetrahedron Lett. 2008, 49, 5238−
5240.
(11) Katayama, H.; Urushima, H.; Nishioka, T.; Wada, C.; Nagao,
M.; Ozawa, F. Angew. Chem., Int. Ed. 2000, 39, 4513−4515.
2798
dx.doi.org/10.1021/ja210946z | J. Am. Chem.Soc. 2012, 134, 2788−2799