points (Fig. 2c). In contrast, upon heating amorphous states G1,
their DSC curves firstly exhibit an exothermic recrystallization
peak at relatively lower temperatures of about 150 1C, and then
an endothermic melting peak was detected, which is similar to
the melting points of corresponding crystalline state samples.
It is due to the fact that as the temperature increases, the
amorphous solid will become less viscous and the molecules
may obtain enough freedom of motion to spontaneously arrange
themselves into a crystalline form. In addition, because the
melting point of Y1 in different states is higher than their
decomposition temperature (Fig. S12, ESIw), the DSC of Y1,
O1 and heated O1 was only recorded from RT to 300 1C.
As depicted in Fig. 2d, it is clear that except O1 with a
recrystallization peak at about 220 1C, there are no endo- and/
or exothermic peaks prior to 300 1C. The results indicate that the
ground samples are in a metastable state which can be restored
to thermodynamically stable crystals (B1 and Y1) from the powder
(G1 and O1) through an exothermic recrystallization process.
The 13C magic-angle spinning nuclear magnetic resonance
(CP/MAS-NMR) spectroscopy was also used to provide deep
insight into the piezochromic behaviors of the B1 and Y1 crystal-
line powders. As shown in Fig. S13, ESIw the ground samples G1
and O1 also keep their original conformation at the molecular
level. In crystalline samples, they show clear sharp resonance lines.
By contrast, the resonance lines of ground samples exhibit broader
distribution compared with those of crystalline ones. Based on
our experimental results, we can confidently propose that the
ground samples, obtained by the mechanical grinding, are a
kind of B1 and Y1 amorphous state powders.18 The 15N NMR
data also support these results (Fig. S14, ESIw). Although the
intermolecular interaction property of amorphous states
cannot be determined accurately at the current stage, the
emission properties of these two complexes may be strongly
molecular packing dependent. Moreover, the photolumines-
cence decays of the samples before and after grinding were also
performed, revealing that emission lifetimes for crystalline states
are longer than those for amorphous ones (Fig. S15, ESIw).
In summary, we have successfully prepared and discovered
two cationic complexes exhibiting a fascinating piezochromic
phosphorescence, in which the emission color can be switched
reversibly by grinding and heating. This is the first report that
the Ir(III) complexes display piezochromic phosphorescence.
Based on the PXRD, DSC and CP/MAS NMR studies, we
found that this piezochromic phosphorescence origin could be
attributed to a crystalline–amorphous phase transformation.
This reversible color change feature will be useful in developing
new application for Ir(III) complexes, such as optical recording,
temperature- or pressure-sensing in future.
Notes and references
1 (a) S. R. Forrest and M. E. Thompson, Chem. Rev., 2007, 107, 923;
(b) Luminescent Materials and Applications, ed. A. Kitai,
John Wiley & Sons, Chichester, 2008.
2 (a) H. Y. Zhang, Z. L. Zhang, K. Q. Ye, J. Y. Zhang and Y. Wang,
Adv. Mater., 2006, 18, 2369; (b) Y. Dong, J. W. Y. Lam, A. Qin,
Z. Li, J. Sun, H. H. Y. Sung, I. D. Williamsa and B. Z. Tang,
Chem. Commun., 2007, 40.
3 (a) J. Kunzelman, M. Kinami, B. R. Crenshaw, J. D. Protasiewicz
and C. Weder, Adv. Mater., 2008, 20, 119; (b) A. L. Balch,
Angew. Chem., Int. Ed., 2009, 48, 2641; (c) G. Q. Zhang,
J. W. Lu, M. Sabat and C. L. Fraser, J. Am. Chem. Soc., 2010,
132, 2160; (d) D. P. Yan, J. Lu, J. Ma, S. H. Qin, M. Wei,
D. G. Evans and X. Duan, Angew. Chem., Int. Ed., 2011, 50, 7037.
4 (a) S. J. Yoon, J. W. Chung, J. Gierschner, K. S. Kim, M. G. Choi,
D. Kim and S. Y. Park, J. Am. Chem. Soc., 2010, 132, 13675;
(b) H. Y. Li, Z. G. Chi, B. J. Xu, X. Q. Zhang, X. F. Li, S. W. Liu,
Y. Zhang and J. R. Xu, J. Mater. Chem., 2011, 21, 3760;
(c) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am. Chem.
Soc., 2007, 129, 1520; (d) Y. Ooyama and Y. Harima, J. Mater.
Chem., 2011, 21, 8372; (e) X. Q. Zhang, Z. G. Chi, H. Y. Li,
B. J. Xu, X. F. Li, W. Zhou, S. W. Liu, Y. Zhang and J. R. Xu,
Chem.–Asian. J., 2011, 6, 808; (f) P. M. Kazmaier and
R. Hoffmann, J. Am. Chem. Soc., 1994, 116, 9684.
5 (a) H. Ito, S. Tomihisa, O. Naoya, N. Kitamura, S. Ishizaka,
Y. Hinatsu, M. Wakeshima, M. Kato, K. Tsuge and
M. Sawamura, J. Am. Chem. Soc., 2008, 130, 10044;
(b) Z. Assefa, M. A. Omary, B. G. McBurnett, A. A. Mohamed,
H. H. Patterson, R. J. Staples and J. P. Fackler Jr., Inorg. Chem.,
2002, 41, 6274; (c) Y. A. Lee and R. Eisenberg, J. Am. Chem. Soc.,
2003, 125, 7778; (d) J. Schneider, Y. A. Lee, J. Perez,
W. W. Brennessel, C. Flaschenriem and R. Eisenberg, Inorg. Chem.,
2008, 47, 957.
6 T. Tsukuda, M. Kawase, A. Dairiki, K. Matsumoto and
T. Tsubomura, Chem. Commun., 2010, 46, 1905.
7 S. Mizukami, H. Houjou, K. Sugaya, E. Koyama, H. Tokuhisa,
T. Sasaki and M. Kanesato, Chem. Mater., 2005, 17, 50.
8 T. Abe, T. Itakura, N. Ikeda and K. Shinozaki, Dalton Trans.,
2009, 711.
9 H. Bi, D. Chen, D. Li, Y. Yuan, D. Xia, Z. Zhang, H. Zhang and
Y. Wang, Chem. Commun., 2011, 47, 4135.
10 Y. Sagara and T. Kato, Nat. Chem., 2009, 1, 605.
11 (a) H. Bouas-Laurent and H. Durr, Pure Appl. Chem., 2001,
¨
73, 639; (b) X. Q. Zhang, Z. G. Chi, H. Y. Li, B. J. Xu, X. F. Li,
W. Zhou, S. W. Liu, Y. Zhang and J. R. Xu, Chem.–Asian J., 2011,
6, 808.
12 (a) Q. Zhao, F. Y. Li and C. H. Huang, Chem. Soc. Rev., 2010,
39, 3007; (b) G. G. Shan, D. X. Zhu, H. B. Li, P. Li, Z. M. Su and
Y. Liao, Dalton Trans., 2011, 40, 2947.
13 C. Ulbricht, B. Beyer, C. Friebe, A. Winter and U. S. Schubert,
Adv. Mater., 2009, 21, 4418.
14 (a) L. He, L. Duan, J. Qiao, D. Q. Zhang, L. D. Wang and Y. Qiu,
Chem. Commun., 2011, 47, 6467; (b) J. D. Slinker, A. A. Gorodetsky,
M. S. Lowry, J. J. Wang, S. Parker, R. Rohl, S. Bernhard and
G. G. Malliaras, J. Am. Chem. Soc., 2004, 126, 2763; (c) R. D.
Costa, E. Ortı, H. J. Bolink, S. Graber, C. E. Housecroft and
´
E. C. Constable, Chem. Commun., 2011, 47, 3207.
15 (a) P. K. Lee, H. W. Liu, S. M. Yiu, M. W. Louie and K. K. W. Lo,
Dalton Trans., 2011, 40, 2180; (b) K. Y. Zhang and K. K. W. Lo,
Inorg. Chem., 2009, 48, 6011; (c) M. X. Yu, Q. Zhao, L. X. Shi,
F. Y. Li, Z. G. Zhou, H. Yang, T. Yi and C. H. Huang, Chem.
Commun., 2008, 2115.
The authors gratefully acknowledge financial support from
NSFC (20703008 and 20903020), 973 Program (2009CB623605),
Program for Changjiang Scholars and Innovative Research
Team in University (IRT0714), the Science Foundation for
Young of Jilin Scientific Development Project (No. 20100182)
and open Project of State Key Laboratory of Supramolecular
Structure and Materials (SKLSSM 201107).
16 E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R. Frohlich,
¨
¨
L. De Cola, A. van Dijken, M. Buchel and H. Borner, Inorg.
Chem., 2007, 46, 11082.
¨
17 (a) M. Sase, S. Yamaguchi, Y. Sagara, I. Yoshikawa, T. Mutai and
K. Araki, J. Mater. Chem., 2011, 21, 8347; (b) J. Luo, L. Y. Li,
Y. L. Song and J. Pei, Chem.–Eur. J., 2011, 17, 10515.
18 P. Gao, Pharm. Res., 1998, 15, 1425.
c
2002 Chem. Commun., 2012, 48, 2000–2002
This journal is The Royal Society of Chemistry 2012