3 (a) Q. Zeng and S. E. Rokita, Tandem quinone methide generation
for cross-linking DNA, J. Org. Chem., 1996, 61, 9080–9081; (b) S. E.
Rokita, J. Yang, P. Pande and W. A. Greenberg, Quinone methide
alkylation of deoxycytidine, J. Org. Chem., 1997, 62, 3010–3012.
4 (a) W. F. Velhuyzen, P. Pande and S. E. Rokita, A transient product
of DNA alkylation can be stabilized by binding localization, J. Am.
Chem. Soc., 2003, 125, 14005–14013; (b) Q. Zhou and S. E. Rokita, A
general strategy for target-promoted alkylation in biological systems,
Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 15452–15457; (c) P. Wang, R.
Liu, X. Wu, H. Ma, X. Cao, P. Zhou, J. Zhang, X. Weng, X. L. Zhang,
X. Zhou and L. Weng, A potent, water-soluble and photoinducible
DNA cross-linking agent, J. Am. Chem. Soc., 2003, 125, 1116–1117;
(d) S. N. Richter, S. Maggi, S. Colloredo Mels, M. Palumbo and M.
Freccero, Binol quinone methides as bisalkylating and DNA cross-
linking agents, J. Am. Chem. Soc., 2004, 126, 13973–13979.
5 (a) M. Engholm and T. H. Koch, Coupling of the anthracycline
antitumor drug menogaril to 2¢-deoxyguanosine through reductive
activation, J. Am. Chem. Soc., 1989, 111, 8291–8293; (b) G. Gaudiano,
M. Frigerio, P. Bravo and T. H. Koch, Intramolecular trapping of
the quinone methide from reductive cleavage of daunomycin with
oxygen and nitrogen nucleophiles, J. Am. Chem. Soc., 1990, 112,
6704–6709; (c) S. R. Angle and W. Yang, Nucleophilic addition of
2¢-deoxynucleosides to the o-quinone methides 10-(acetyloxy)- and
10-methoxy-3,4-dihydro-9(2H)-anthracenone, J. Org. Chem., 1992,
57, 1092–1097; (d) S. R. Angle, J. D. Rainer and C. Woytowicz,
Synthesis and Chemistry of Quinone Methide Models for the An-
thracycline Antitumor Antibiotics, J. Org. Chem., 1997, 62, 5884–
5892.
14 K. Nakatani, N. Higashida and I. Saito, Highly from efficient
photochemical generation of o-quinone methide Mannich bases of
phenol derivatives, Tetrahedron Lett., 1997, 38, 5005–5008.
ˇ
15 N. Basaric´, I. Zabcˇic´, K. Mlinaric´-Majerski and P. Wan, Photochem-
ical formation and chemistry of long-lived adamantylidene quinone
methides and 2-adamantyl cations, J. Org. Chem., 2010, 75, 102–116.
16 M. Di Antonio, F. Doria, S. N. Richter, C. Bertipaglia, M. Mella, C.
Sissi, M. Palumbo and M. Freccero, Quinone methides tethered to
naphthalene diimides as selective G-quadruplex alkylating agents, J.
Am. Chem. Soc., 2009, 131, 13132–13141.
ˇ
17 N. Basaric´, N. Cindro, Y. Hou, I. Zabcˇic´, K. Mlinaric´-Majerski and P.
Wan, Competing photodehydration and excited-state intramolecular
proton transfer (ESIPT) in adamantly derivatives of 2-phenylphenol,
Can. J. Chem., 2011, 89, 221–234.
18 R. N. Mirrington and G. I. Feutrill, Ornicol monomethyl ether, Org.
Synth., 1973, 53, 90–94.
19 (a) D. W. Brusmiche, M. Xu, M. Lukeman and P. Wan, Photohydration
and photosolvolysis of biphenyl alkenes and alcohols via biphenyl
quinone methide-type intermediates and diarylmethyl carbocations,
J. Am. Chem. Soc., 2003, 125, 12961–12970; (b) Y. Shi and P. Wan,
Solvolysis and ring closure of quinone methides photogenerated from
biaryl systems, Can. J. Chem., 2005, 83, 1306–1323; (c) M. Xu, M.
Lukeman and P. Wan, Photogeneration and chemistry of biphenyl
quinone methide from hydroxybiphenyl methanols, Photochem. Pho-
tobiol., 2006, 82, 50–56; (d) L. Diao and P. Wan, Chemistry of
photogenerated a-phenyl-substituted o-, m-, and p-quinone methides
from phenol derivatives in aqueous solution, Can. J. Chem., 2008, 86,
105–118; (e) M. Xu, C. Z. Chen and P. Wan, Intramolecular charge
transfer in photoexcited hydroxyterphenyls: Evidence for formation
of terphenyl quinine methides in aqueous solution, J. Photochem.
Photobiol., A, 2008, 198, 26–33; (f) N. Behin Aein and P. Wan, Excited
state intramolecular proton transfer (ESIPT) from phenol OH (OD)
to adjacent “aromatic” carbons in simple biphenyls, J. Photochem.
Photobiol., A, 2009, 208, 42–49.
20 (a) J. Lee, G. W. Robinson, S. P. Webb, L. A. Philips and J. H. Clark,
Hydration dynamics of protons from photon initiated acids, J. Am.
Chem. Soc., 1986, 108, 6538–6542; (b) G. W. Robinson, Proton charge
transfer involving the water solvent, J. Phys. Chem., 1991, 95, 10386–
10391; (c) L. M. Tolbert and J. E. Haubrich, Photoexcited proton
transfer from enhanced photoacids, J. Am. Chem. Soc., 1994, 116,
10593–10600; (d) K. M. Solntsev, D. Huppert, N. Agmon and L. M.
Tolbert, Photochemistry of “super” photoacids. 2. Excited-state proton
transfer in methanol/water mixtures, J. Phys. Chem. A, 2000, 104,
4658–4669.
21 H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry,
Pure Appl. Chem., 2004, 76, 2105–2146.
22 (a) H. E. Zimmermann and V. R. Sandel, Mechanistic organic photo-
chemistry. II. solvolytic photochemical reactions, J. Am. Chem. Soc.,
1963, 85, 915–922; (b) H. E. Zimmermann, The meta effect in organic
photochemistry: Mechanistic and exploratory organic photochemistry,
J. Am. Chem. Soc., 1995, 117, 8988–8991.
23 M. Lukeman and P. Wan, A new type of excited-state intramolecular
proton transfer: Proton transfer from phenol OH to a carbon atom
of an aromatic ring observed for 2-phenylphenol, J. Am. Chem. Soc.,
2002, 124, 9458–9464.
24 Y. Shi and P. Wan, Charge polarization in photoexcited alkoxy-
substituted biphenyls: Formation of biphenyl quinone methides, J.
Chem. Soc., Chem. Commun., 1995, 1217–1218.
25 M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of
Photochemistry, CRC Taylor and Francis, Boca Raton, 2006.
26 (a) M. Fisher and P. Wan, Nonlinear solvent water effects in the excited-
state (formal) intramolecular proton transfer (ESIPT) in m-hydroxy-
1,1-diaryl alkenes: Efficient formation of m-quinone methides, J. Am.
Chem. Soc., 1999, 121, 4555–4562; (b) L. M. Tolbert and K. M. Solntsev,
Excited-state proton transfer: From constrained systems to “super”
photoacids to superfast proton transfer, Acc. Chem. Res., 2002, 35, 19–
27; (c) N. Agmon, Elementary Steps in Excited-State Proton Transfer,
J. Phys. Chem. A, 2005, 109, 13–35.
27 R. Townsed and S. G. Schulman, Acidity of hydroxybiphenyls in the
lowest excited singlet state: The influence of substituent orientation,
Chim. Oggi, 1992, 10, 49–52.
28 L. J. Johnston and N. P. Schepp, Laser flash photolysis studies of the
reactivity of styrene radical cations, Pure Appl. Chem., 1995, 67, 71–78.
29 P. R. Levin, I. V. Khudyakov, V. A. Kuz’min, H. J. Hageman and C. R.
H. I. de Jonge, Flash photolysis study of phenyl-substituted phenols,
6 (a) D. Verga, M. Nadai, F. Doria, C. Percivalle, M. Di Antonio, M.
Palumbo, S. N. Richter and M. Freccero, Photogeneration and reac-
tivity of naphthoquinone methides as purine selective DNA alkylating
agents, J. Am. Chem. Soc., 2010, 132, 14625–14637; (b) F. Doria, S.
N. Richter, M. Nadai, S. Colloredo-Mels, M. Mella, M. Palumbo and
M. Freccero, BINOL-amino acids conjugates as triggerable carriers of
DNA-targeted photocytotoxic agents, J. Med. Chem., 2007, 50, 6570–
6579.
7 D. A. Bolon, Stevens rearrangements of N,N,N-trimethylneopentyl-
ammonium iodide, J. Org. Chem., 1970, 35, 3666–3670.
8 (a) G. G.-H. Qiao, K. Lenghaus, D. H. Solomon, A. Reisinger,
I. Bytheway and C. Wentrup, 4,6-Dimethyl-o-quinone Methide and
4,6-Dimethylbenzoxete, J. Org. Chem., 1998, 63, 9806–9811; (b) E.
Dorrestijn, M. Kranenburg, M. V. Ciriano and P. Mulder, The
Reactivity of o-Hydroxybenzyl Alcohol and Derivatives in Solution at
Elevated Temperatures, J. Org. Chem., 1999, 64, 3012–3018; (c) M. Yato,
T. Ohwada and K. Shudo, 4H-1,2-Benzoxazines as novel precursors
of o-benzoquinone methide, J. Am. Chem. Soc., 1990, 112, 5341–
5342.
9 P. Pande, J. Shearer, J. Yang, W. A. Greenberg and S. E. Rokita,
Alkylation of Nucleic Acids by a Model Quinone Methide, J. Am.
Chem. Soc., 1999, 121, 6773–6779.
10 R. W. Van De Water and T. R. R. Pettus, o-Quinone methides:
intermediates underdeveloped and underutilized in organic synthesis,
Tetrahedron, 2002, 58, 5367–5405.
11 P. Wan, B. Barker, L. Diao, M. Fisher, Y. Shi and C. Yang, Quinone
methides: relevant intermediates in organic chemistry, Can. J. Chem.,
1996, 74, 465–475.
12 (a) P. Wan and B. Chak, Structure–reactivity studies and catalytic effects
in the photosolvolysis of methoxy-substituted benzyl alcohols, J. Chem.
Soc., Perkin Trans. 2, 1986, 1751–1756; (b) L. Diao, C. Yang and P. Wan,
Quinone methide intermediates from the photolysis of hydroxybenzyl
alcohols in aqueous solution, J. Am. Chem. Soc., 1995, 117, 5369–5370.
13 (a) Y. Chiang, A. J. Kresge and Y. Zhu, Kinetics and mechanism of
hydration of o-quinone methides in aqueous solution, J. Am. Chem.
Soc., 2000, 122, 9854–9855; (b) Y. Chiang, A. J. Kresge and Y. Zhu,
Flash photolytic generation of ortho-quinone methide in aqueous
solution and study of its chemistry in that medium, J. Am. Chem. Soc.,
2001, 123, 8089–8094; (c) Y. Chiang, A. J. Kresge and Y. Zhu, Flash
photolytic generation of o-quinone a-phenylmethide and o-quinone
a-(p-anisyl)methide in aqueous solution and investigation of their
reactions in that medium, saturation of acid-catalyzed hydration, J.
Am. Chem. Soc., 2002, 124, 717–722; (d) Y. Chiang, A. J. Kresge and
Y. Zhu, Flash photolytic generation of p-quinone methide in aqueous
solution. An estimate of rate equilibrium for heterolysis of the carbon-
bromine bond in p-hydroxylbenzyl bromide, J. Am. Chem. Soc., 2002,
124, 6349–6356.
1924 | Photochem. Photobiol. Sci., 2011, 10, 1910–1925 This journal is
The Royal Society of Chemistry and Owner Societies 2011
©