ACS Combinatorial Science
Research Article
cholecystokinin antagonist. Proc. Natl. Acad Sci. U.S.A. 1986, 83,
4923−4926.
(10) (a) Leimgruber, W.; Stefanovic, V.; Schenker, F.; Karr, A.;
Berger, J. Isolation and characterization of anthramycin, a new
antitumor antibiotic. J. Am. Chem. Soc. 1965, 87, 5791−5793.
(b) Leimgruber, W.; Batcho, A. D.; Schenker, F. The structure of
anthramycin. J. Am. Chem. Soc. 1965, 87, 5793−5795.
(11) For the first exampleof this process, see: Martin, S. F.; Benage,
B.; Geraci, L. S.; Hunter, J. E.; Mortimore, M. Unified strategy for
synthesis of indole and 2-oxindole alkaloids. J. Am. Chem. Soc. 1991,
113, 6161−6171.
(12) Cheng, B.; Sunderhaus, J. D.; Martin, S. F. Concise total
synthesis of pseudotabersonine via double ring-closing metathesis
strategy. Org. Lett. 2010, 12, 3622−3625.
(13) (a) Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F.
Applications of multicomponent reactions for the synthesis of diverse
heterocyclic scaffolds. Org. Lett. 2007, 9, 4223−4226. (b) Sunderhaus,
J. D.; Dockendorff, C.; Martin, S. F. Synthesis of diverse heterocyclic
scaffolds via tandem additions to imine derivatives and ring-forming
reactions. Tetrahedron 2009, 65, 6454−6469.
sequential MCAP/cyclization strategy to the synthesis of
medicinally relevant small molecules is ongoing and will be
reported in due course.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, full characterization data for representa-
tive compounds, LCMS data for representative compounds, and
tabulated Lipinski’s rule parameters for representative compounds.
This material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(14) For a review of relatedstrategies, see: Sunderhaus, J. D.; Martin,
S. F. Applications of multicomponent reactions to the synthesis of
diverse heterocyclic scaffolds. Chem.−Eur. J. 2009, 15, 1300−1308.
(15) Donald, J. R.; Martin, S. F. Synthesis and diversification of 1,2,3-
triazole-fused 1,4-benzodiazepine scaffolds. Org. Lett. 2011, 13, 852−
855.
ACKNOWLEDGMENTS
■
We thank the National Institutes of Health (GM 86192) and
the Robert A. Welch Foundation (F-0652) for their generous
support of this work.
(16) Donald, J. R.; Granger, B. A.; Hardy, S.; Sahn, J. J.; Martin, S. F.
Applications of multicomponent assembly processes to the facile
syntheses of diversely functionalized nitrogen heterocycles. Heterocycles
2012, DOI: 10.3987/COM-11-S(P)92.
(17) Hardy, S.; Martin, S. F. Multicomponent assembly and
diversification of novel heterocyclic scaffolds derived from
2-arylpiperidines. Org. Lett. 2011, 13, 3102−3105.
(18) Granger, B. A.; Kaneda, K.; Martin, S. F. Multicomponent
assembly strategies for the synthesis of diverse tetrahydroisoquinoline
scaffolds. Org. Lett. 2011, 13, 4542−4545.
(19) (a) Sahn, J. J.; Su, J. Y.; Martin, S. F. Facile and unified approach
to skeletally diverse, privileged scaffolds. Org. Lett. 2011, 13, 2590−
2593. (b) Sahn, J. J.; Martin, S. F. Facile syntheses of substituted,
conformationally-constrained benzoxazocines and benzazocines via
sequential multicomponent assembly and cyclization. Tetrahedron Lett.
2011, 52, 6855−6858.
(20) For reports of the biological activity of 1,2,3-triazole fused
benzodiazepines, see: (a) Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.;
Manera, C.; Scartoni, V.; Martini, C.; Giannaccini, G.; Trincavelli, L.;
Barili, P. L. 1,2,3-Triazolo[1,5-a][1,4]- and 1,2,3-triazolo[1,5-a]-
[1,5]benzodiazepine derivatives: Synthesis and benzodiazepine
receptor binding. Farmaco 1998, 53, 305−311. (b) Mohapatra,
D. K.; Maity, P. K.; Shacbab, M.; Khan, M. I. Click chemistry based
rapid one-pot synthesis and evaluation for protease inhibition of new
tetracyclic triazole fused benzodiazepine derivatives. Bioorg. Med.
Chem. Lett. 2009, 19, 5241−5245.
REFERENCES
■
(1) Jenkins, J. L.; Kao, R. Y. T.; Shapiro, R. Virtual screening to
enrich hit lists from high-throughput screening: A case study on small-
molecule inhibitors of angiogenin. Prot. Struct. Funct. Genet. 2003, 50,
81−93.
(2) For reviews, see: (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L.
The combinatorial synthesis of bicyclic privileged structures or privileged
substructures. Chem. Rev. 2003, 103, 893−930. (b) DeSimone, R. W.;
Currie, K. S.; Mitchell, S. A.; Darrow, J. W.; Pippin, D. A. Privileged
structures: Applications in drug discovery. Comb. Chem. High Throughput
Screening 2004, 7, 473−493. (c) Costantino, L.; Barlocco, D. Privileged
structure as leads in medicinal chemistry. Curr. Med. Chem. 2006, 13, 65−
85. (d) Duarte, C. D.; Barreiro, E. J.; Fraga, C. A. M. Privileged structures:
A useful concept for the rational design of new lead drug candidates. Mini-
Rev. Med. Chem. 2007, 7, 1108−1119. (e) Welsch, M. E.; Snyder, S. A.;
Stockwell, B. R. Privileged scaffolds for library design and drug discovery.
Curr. Opin. Chem. Biol. 2010, 14, 347−361.
(3) Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.;
Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.;
Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.;
Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. Methods for
drug discovery: Development of potent, selective, orally effective
cholecystokinin antagonists. J. Med. Chem. 1988, 31, 2235−2246.
(4) For examples of libraries based upon benzodiazepine core
structures, see references 2 and 3.
(5) Ripka, W. C.; De Lucca, G. V.; Bach, A. C. II; Pottorf, R. S.;
Blaney, J. M. Protein β-turn mimetics I. Design, synthesis, and
evaluation in model cyclic peptides. Tetrahedron 1993, 49, 3593−3608.
(6) Grasberger, B. L.; Lu, T.; Schubert, C.; Parks, D. J.; Carver, T. E.;
Koblish, H. K.; Cummings, M. D.; LaFrance, L. V.; Milkiewicz, K. L.;
Calvo, R. R.; Maguire, D.; Lattanze, J.; Franks, C. F.; Zhao, S.;
Ramachandren, K.; Bylebyl, G. R.; Zhang, M.; Mathney, C. L.; Petrella,
E. C.; Pantoliano, M. W.; Deckman, I. C.; Spurlino, J. C.; Maroney,
A. C.; Tomczuk, B. E.; Molloy, C. J.; Bone, R. F. Discovery and
cocrystal structure of benzodiazepinedione HDM2 antagonists that
activate p53 in cells. J. Med. Chem. 2005, 48, 909−912.
(21) (a) Alajarín, M.; Cabrera, J.; Pastor, A.; Villalgordo, J. M. A new
modular and flexible approach to [1,2,3]triazolo[1,5-a][1,4]-
benzodiazepines. Tetrahedron Lett. 2007, 48, 3495−3499. (b) Jain,
R.; Trehan, S.; Singh, N.; Nanda, G. K.; Magadi, S. K.; Sharma, S. K.;
Das, J. (Panacea Biotech Limited) Novel heterocyclic compounds.
World Patent WO 093269 (A1), 2009.
(22) Wolfe, J. P.; Buchwald, S. L. Scope and Limitations of the Pd/
BINAP-Catalyzed Amination of Aryl Bromides. J. Org. Chem. 2000, 65,
1144−1157.
(23) Wagaw, S.; Buchwald, S. L. The Synthesis of Aminopyridines: A
Method Employing Palladium-Catalyzed Carbon-Nitrogen Bond
Formation. J. Org. Chem. 1996, 61, 7240−7241.
(7) Tyndall, J. D. A.; Pfeiffer, B.; Abbenante, G.; Fairlie, D. P. Over
one hundred peptide-activated G protein-coupled receptors recognize
ligands with turn structure. Chem. Rev. 2005, 105, 793−826.
(8) Sternbach, L. H. The benzodiazepine story. J. Med. Chem. 1979,
22, 1−7.
(24) For recent reviews on the use of α-amino nitriles in the
generation of molecular diversity, see: (a) Opatz, T. The chemistry of
deprotonated α-aminonitriles. Synthesis 2009, 12, 1941−1959.
(9) Chang, R. S. L.; Lotti, V. J. Biochemical and pharmacological
characterization of an extremely potent and selective nonpeptide
́ ́
(b) Gonzalez-Vera, J. A.; García-Lopez, M. T.; Herranz, R. Potential
of amino acid-derived α-amino nitriles for generating molecular
142
dx.doi.org/10.1021/co2002087 | ACS Comb. Sci. 2012, 14, 135−143