M. Pyrkosz et al. / Inorganica Chimica Acta 380 (2012) 223–229
229
[CuL2]2-
4. Conclusions
100
80
60
40
20
0
[CuL]
[CuHL2]-
The obtained compounds (as ligands L1–L5) were evaluated for
coordination of Cu(II) and Ni(II) ions. For all ligands, solution stud-
ies suggest formation of variously protonated mono- and bis-
complexes, where copper and nickel coordination is realized
through the nitrogen atoms of the imidazole and amino groups,
supported by an oxygen from the phosphonate unit.
A series of new 2-imidazole ligands can be used as powerful
chelating agents especially for Ni(II) ions. The presence of the
2-imidazole ring increases the binding ability of studied
aminophosphonates when compared to the previously designed
4(5)-imidazole analogs. pNi(II) values of 2-imidazole ligands are
few orders of magnitude greater than their 4(5)-imidazole deriva-
tives. The present data clearly indicate the impact of imidazole
moiety on the binding ability of aminophosphonate ligands.
Moreover, the introduction of ortho-pyridine as additional
donor in the side chain significantly increases the binding ability
towards both, Cu(II) and Ni(II) ions. The effectiveness of this com-
pound may be due to concomitant chelation of metal ion through
the imidazole, imino and pyridine nitrogen donors.
2
3
4
5
6
pH
7
8
9
10
Fig. 5. Species distribution diagram for the Cu(II)–L3 system ([Cu(II)] = 2 Â 10À3 M,
metal-to-ligand molar ratio 1:2).
[NiHL]+
100
Acknowledgments
[NiHL2]-
[NiL2]2-
Ni(II)free
The authors thank Professor Bogdan Boduszek (Wroclaw
University of Technology) for L1 and L2 ligands used in this study
and Professor Henryk Kozlowski (University of Wroclaw) for help-
ful discussions. This research was supported by the Polish Ministry
of Science and Higher Education and Faculty of Chemistry, Univer-
sity of Wroclaw (105/10/E-344/M/2011) and by internal grant
from the Faculty of Chemistry, Wroclaw University of Technology.
80
60
[NiL2(OH)]3-
40
[NiH2L2]
References
20
[1] K. Popov, H. Ronkkomaki, L.H.J. Lajunen, Pure Appl. Chem. 73 (2001) 1641.
[2] V. Chavane, General Ann. Chim. 4 (1949) 352.
[3] R. Engel, Chem. Rev. 77 (1977) 349.
[4] T. Kiss, I. Lazar, in: V.P. Kukhar, H.R. Hudson (Eds.), Aminophosphonic and
Aminophosphinic Acids Chemistry and Biological Activity, John Wiley and Sons
Ltd., 2000, p. 285.
[5] J. Galezowska, E. Gumienna-Kontecka, Coord. Chem. Rev. (2011), doi:10.1016/
[6] F. Orsini, G. Sello, M. Sisti, Curr. Med. Chem. 17 (2010) 264.
[7] L. Chruscinski, P. Mlynarz, K. Malinowska, J. Ochocki, B. Boduszek, H.
Kozlowski, Inorg. Chim. Acta 303 (2000) 47.
[8] R. Lipinski, L. Chruscinski, P. Mlynarz, B. Boduszek, H. Kozlowski, Inorg. Chim.
Acta 322 (2001) 157.
0
2
3
4
5
6
7
8
9
10
11
pH
Fig. 6. Species distribution diagram for the Ni(II)–L2 system (solid line) and Ni(II)–
L3 (dotted line). L3
– imidazole-4-methyl(N-benzylamino) phosphonic acid,
[Ni(II)] = 2 Â 10À3 M, metal-to-ligand molar ratio 1:3.
[9] J. Galezowska, P. Kafarski, H. Kozlowski, P. Mlynarz, V.M. Nurchi, T. Pivetta,
Inorg. Chim. Acta 362 (2009) 707.
[10] W. Goldeman, M. Pyrkosz, E. Gumienna-Kontecka, B. Boduszek, Inorg. Chim.
Acta 365 (2011) 391.
Table 3
pM(II) values for various N-substituted imidazole (amino)methylphosphonates.a
Ligand
pCu(II)
pNi(II)
Reference
[11] B. Boduszek, Polish J. Chem. 75 (2001) 663.
L1
L2
L3
L4
L5
11.5
13.5
21.9
11.5
13.8
12.2
13.0
28.7
16.9
14.0
This work
‘‘
‘‘
‘‘
[12] S. Sobek, B. Boduszek, H. Kozlowski, Inorg. Chim. Acta 355 (2003) 462.
[13] B. Boduszek, T.K. Olszewski, W. Goldeman, Experimental details and
spectroscopic data will be given in an extensive paper devoted to various
phosphorous derivatives of 2-imidazole, Tetrahedron, in preparation.
[14] P. Gans, B. O’Sullivan, Talanta 51 (2000) 33.
[15] P. Gans, A. Sabatini, A. Vacca, J. Chem. Soc., Dalton Trans. (1985) 1195.
[16] P. Gans, Data Fitting in the Chemical Sciences, John Wiley and Sons, Chichester,
1992.
[12]
L1
L2
L3
12.8
12.9
12.5
7.4
8.6
8.4
‘‘
‘‘
‘‘
[17] L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca, Coord. Chem. Rev.
(1999) 311.
a
pM(II) = Àlog[M(II)]free at pH 7.4 for [M(II)] = 10À6
M
and [L] = 10À5 M.
[18] H. Gampp, M. Maeder, C.J. Meyer, A.D. Zuberbühler, Talanta 32 (1985) 95.
[19] H. Gampp, M. Maeder, C.J. Meyer, A.D. Zuberbühler, Talanta 32 (1985) 257.
[20] H. Gampp, M. Maeder, C.J. Meyer, A.D. Zuberbühler, Talanta 33 (1986) 943.
[21] F.J.C. Rossotti, H.S. Rossotti, R.J. Whewell, J. Inorg. Nucl. Chem. 33 (1971) 2051.
[22] D.W. Marquardt, J. Soc. Ind. Appl. Math. 11 (1963) 431.
[23] M. Maeder, A.D. Zuberbühler, Anal. Chem. 62 (1990) 2220.
[24] B. Kurzak, A. Kamecka, K. Kurzak, J. Jezierska, P. Kafarski, Polyhedron 17 (1998)
4403.
[25] B. Kurzak, A. Kamecka, K. Kurzak, J. Jezierska, P. Kafarski, Polyhedron 19 (2000)
2083.
[26] R.J. Sundberg, R.B. Martin, Chem. Rev. 74 (1974) 471.
[27] W.R. Harris, C.J. Carrano, K.N. Raymond, J. Am. Chem. Soc. 101 (1979) 2213.
Abbreviations used: L1
– (amino)(1H-imidazol-4-yl)methyl phosphonic acid;
L2 – imidazole-4-methyl(N-butyloamino) phosphonic acid; and L3 – imidazole-4-
methyl(N-benzylamino) phosphonic acid.
ortho-pyridine as additional donor in the side chain significantly
enhances the binding ability towards both, Cu(II) and Ni(II) ions
(Table 3). The corresponding pCu(II) and pNi(II) values are
increased by 8–16 orders of magnitude. The effectiveness of this
compound may come from concomitant chelation of metal ions
through the pyridine nitrogen donor together with imidazole and
imino ones.