regarding their potential toward further synthetically and
biologically useful elaboration. Surprisingly, practical and
efficient approaches, especially catalytic asymmetric var-
iants to assemble this useful architecture, are rare.7 In view
of the importance of this class of molecules as well as the
lack of generality and efficiency to access these important
synthetic targets, the development of a new catalytic asym-
metric synthesis of polysubstituted tetrahydrothiophenes
is still in demand. As our group is working on the devel-
opment of novel and practical asymmetric cascade reac-
tions8 and inspired by the previous achievements in
H-bonding activation of chalcones toward nucleophilic
addition, herein we propose that the trisubstituted tetra-
hydrothiophenes 4 could be directly constructed from
commercially available 1,4-dithiane-2,5-diol 2 and chal-
cones 3 via a sulfa-Michael9/aldol cascade reaction with
suitable H-bond donor catalyst 1.
Scheme 1. Development of Hydrogen-Bond-Mediated Asym-
metric Cascade Reaction of Chalcones
(5) For selected examples, see: (a) Wang, J.; Li, H.; Zu, L.; Jiang, W.;
Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652. (b)
Russo, A.; Perfetto, A.; Lattanzi, A. Adv. Synth. Catal. 2009, 351, 3067.
(c) Prakash, G. K. S.; Wang, F.; Stewart, T.; Mathew, T.; Olah, G. A.
Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 4090. (d) Zhang, Y.; Yu, C.; Ji,
Y.; Wang, W. Chem.;Asian J. 2010, 5, 1303. (e) Russo, A.; Lattanzi, A.
Eur. J. Org. Chem. 2010, 6736. (f) Zhang, Y.; Shao, Y.-L.; Xu, H.-S.;
ꢁ
Wang, W. J. Org. Chem. 2011, 76, 1472. (g) Manzano, R.; Andres, J. M.;
ꢁ
ꢁ
ꢁ
Alvarez, R.; Muruzabal, M. D.; Lera, A. R.; Pedrosa, R. Chem.;Eur.
J. 2011, 17, 5931. (h) Moccia, M.; Fini, F.; Scagnetti, M.; Adamo,
M. F. A. Angew. Chem., Int. Ed. 2011, 50, 6893.
Figure 1. Bifunctional catalysts screened in this study.
(6) (a) Furukawa, N.; Sugihara, Y.; Fujihara, H. J .Org. Chem. 1989,
54, 4222. (b) Williams, D. R.; Jass, P. A.; Tse, H. L. A.; Gaston, R. D.
J. Am. Chem. Soc. 1990, 112, 4552. (c) Li, A.-H.; Dai, L.-X.; Hou, X.-L.;
Huang, Y.-Z.; Li, F.-W. J. Org. Chem. 1996, 61, 489. (d) Tsygoanko,
V. A.; Blume, Y. B. Biopolim. Kletka 1997, 13, 484. (e) Hauptman, E.;
Shapiro, R.; Marshall, W. Organometallics 1998, 17, 4976. (f) Julienne,
K.; Metzner, P. J. Org. Chem. 1998, 63, 4532. (g) Julienne, K.; Metzner,
P.; Henryon, V. J. Chem. Soc., Perkin Trans. 1 1999, 731. (h) Zanardi, J.;
Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. J. Org. Chem.
2001, 66, 5620. (i) Zanardi, J.; Lamazure, D.; Miniere, S.; Reboul, V.;
Metzner, P. J. Org. Chem. 2002, 67, 9083. (j) Noh, J.; Ito, E.; Nakajima,
K.; Kim, J.; Lee, H.; Hara, M. J. Phys. Chem. B 2002, 106, 7139. (k)
Ward, T. R. Chem.ꢀEur. J. 2005, 11, 3798. (l) Piccinini, A.; Kavanagh,
S. A.; Connon, P. B.; Connon, S. J. Org. Lett. 2010, 12, 608.
Tetrahydrothiophenes are unique sulfur-containing het-
erocycles and have gained much attention due to their
biological activities and diverse applications.6 Poly-
substituted tetrahydrothiophenes are of particular value
(3) For selected reviews of H-bonding catalysis, see: (a) Schreiner,
P. R. Chem. Soc. Rev. 2003, 32, 289. (b) Takemoto, Y. Org. Biomol.
Chem. 2005, 3, 4299. (c) Taylor, M. S.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2006, 45, 1520. (d) Doyle, A. J.; Jacobsen, E. N. Chem. Rev. 2007,
107, 5713. (e) Yu, X.; Wang, W. Chem.;Asian J. 2008, 3, 516. (f) Zhang,
Z.; Schreiner, P. R. Chem. Soc. Rev. 2009, 38, 1187. (g) Pihko, P. M.
Hydrogen Bonding in Organic Synthesis; Wiley-VCH: Weiheim, 2009. For
(7) For asymmetric synthesis of tetrahydrothiophenes, see: (a)
Ponce, A. M.; Overman, L. E. J. Am. Chem. Soc. 2000, 122, 8672. (b)
ꢂ
€
ꢁ
Desmaele, D.; Delarue-Cochin, S.; Cave, C.; dAngelo, J.; Morgant, G.
Org. Lett. 2004, 6, 2421. (c) Dehmlow, E. V.; Westerheide, R. Synthesis
1992, 10, 947. (d) Brandau, S.; Maerten, E.; Jørgensen, K. A. J. Am.
Chem. Soc. 2006, 128, 14986. (e) Li, H.; Zu, L.; Xie, H.; Wang, J.; Wang,
W. Org. Lett. 2007, 9, 1833. (f) Luo, G.; Zhang, S.; Duan, W.; Wang, W.
Tetraheron Lett. 2009, 50, 2946. (g) Yu, C.; Zhang, Y.; Song, A.; J., Y.;
Wang, W. Chem.;Eur. J. 2011, 17, 770. For an example of synthesis of
dihydrothiophenes, see: (h) Tang, J.; Xu, D. Q.; Xia, A. B.; Wang, Y. F.;
Jiang, J. R.; Luo, S. P.; Xu, Z. Y. Adv. Synth. Catal. 2010, 352, 2121. For
an example of synthesis of racemic trisubstituted tetrahydrothiophenes,
see: (i) O’Connor, C. J.; Roydhouse, M. D.; Przybyz, A. M.; Wall, M. D.;
Southern, J. M. J. Org. Chem. 2010, 75, 2534.
€
~
recent examples, see: (h) Enders, D.; Goddertz, D. P.; Beceno, C.; Raabe, G.
Adv. Synth. Catal. 2010, 352, 2863. (i) Rueping, M.; Kuenkel, A.;
€
Frohlich, R. Chem.;Eur. J. 2010, 16, 4173. (j) Wang, X.-F.; Hua,
Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-Q.; Chen, J.-R.; Xiao, W.-J.
Angew. Chem., Int. Ed. 2010, 49, 8379. (k) Wei, Q.; Gong, L.-Z. Org.
Lett. 2010, 12, 1008. (l) Chen, W.-B.; Wu, Z.-J.; Pei, Q.-L.; Cun, L.-F.;
Zhang, X.-L.; Yuan, W.-C. Org. Lett. 2010, 12, 3132. (m) Reuping, M.;
ꢀ
Parra, A.; Uria, U.; Besselievre, F.; Merino, E. Org. Lett. 2010, 12, 5680.
(n) Wang, X.-F.; An, J.; Zhang, X.-X.; Tan, F.; Chen, J.-R.; Xiao, W.-J.
Org. Lett. 2011, 13, 808. (o) Pesciaioli, F.; Righi, P.; Mazzanti, A.;
Bartoli, G.; Bencivenni, G. Chem.;Eur. J. 2011, 17, 2842. (p) Tan, B.;
Candeias, N. R.; Barbas, C. F., III. Nat. Chem. 2011, 3, 473.
(4) For a bifunctional Indane amineꢀthiourea catalyzed sulfa-Mi-
chael/aldol reaction using chromanone-derived R,β-unsaturated ketone,
see: (a) Gao, Y.; Ren, Q.; Wu, H.; Li, M.; Wang, J. Chem. Commun.
2010, 46, 9232. For a guanidine promoted inverse-electron-demand
[4 þ 2] cycloaddition using chalcone as oxadiene, see: (b) Dong, S.; Liu,
X.; Chen, X.; Mei, F.; Zhang, Y.; Gao, B.; Lin, L.; Feng, X.
J. Am. Chem. Soc. 2010, 132, 10650. For selected examples of nucleo-
philic catalyst promoted annulations involving chalcones, see: (c)
Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc.
(8) (a) Han, R.-G.; Wang, Y.; Li, Y.-Y.; Xu, P.-F. Adv. Synth. Catal.
2008, 350, 1474. (b) Wang, Y.; Han, R.-G.; Zhao, Y.-L.; Yang, S.; Xu,
P.-F.; Dixon, D. J. Angew. Chem., Int. Ed. 2009, 48, 9834. (c) Wang, Y.;
Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F.
Chem.;Eur. J. 2010, 16, 3922. (d) Jia, Z.-X.; Luo, Y.-C.; Xu, P.-F. Org.
Lett. 2011, 13, 832.
(9) For selected examples of organocatalyzed sulfa-Michael reac-
tions, see: (a) McDaid, P.; Chen, Y.; Deng, L. Angew. Chem., Int. Ed.
2002, 41, 338. (b) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri,
L.; Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49. (c) Leow, D.; Lin, S.;
Chittmalla, S. K.; Fu, X.; Tan, C.-H. Angew. Chem., Int. Ed. 2008, 47,
5641. (d) Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc.
2009, 131, 8754. (e) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L.
J. Am. Chem. Soc. 2009, 131, 418. (f) Dong, X.-Q.; Fang, X.; Wang, C.-J.
Org. Lett. 2011, 13, 4426. (g) Rana, N. K.; Singh, V. K. Org. Lett. 2011,
13, 6520. (h) Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.;
Galzerano, P.; Arceo, E.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133,
17934.
ꢁ
2007, 129, 3520. (d) Voituriez, A.; Panossian, A.; Bregeot-Fleury, N.;
Retailleau, P.; Marinetti, A. J. Am. Chem. Soc. 2008, 130, 14030. (e)
Nair, V.; Babu, B. P.; Vellalath, S.; Varghese, V.; Raveendran, A. E.;
Suresh, E. Org. Lett. 2009, 11, 2507. (f) Cardinal-David, B.; Raup,
D. E. A.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 5345. (g) Fang, X.;
Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R. Angew. Chem., Int. Ed. 2011, 50,
1910. (h) Zhou, R.; Wang, J.; Song, H.; He, Z. Org. Lett. 2011, 13, 580. (i)
Lv, H.; Mo, J.; Fang, X.; Chi, Y. R. Org. Lett. 2011, 13, 5366.
Org. Lett., Vol. 14, No. 4, 2012
1091