20990221) and the Fundamental Research Funds of the
Central Universities.
Notes and references
1 (a) E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis, J. Am.
Chem. Soc., 2002, 124, 926; (b) X. Y. Li, M. Q. Hou, Z. F. Zhang,
B. X. Han, G. Y. Yang, X. L. Wang and L. Z. Zou, Green Chem.,
2008, 10, 879; (c) B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup,
L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider and
J. F. Brennecke, J. Am. Chem. Soc., 2010, 132, 2116; (d) J. E. Bara,
T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin
and R. D. Noble, Ind. Eng. Chem. Res., 2009, 48, 2739; (e) S. Choi,
J. H. Drese and C. W. Jones, ChemSusChem, 2009, 2, 796;
(f) C. M. Wang, H. M. Luo, D. E. Jiang, H. R. Li and S. Dai,
Angew. Chem., Int. Ed., 2010, 49, 5978.
Fig. 4 FT-IR spectra of [C10mim][Br]–SO2, [E3mim][Cl]–SO2,
[C10mim][Tetz]–SO2, and [E3mim][Tetz]–SO2 at 20 1C and 1 bar.
2 (a) W. Z. Wu, B. X. Han, H. X. Gao, Z. M. Liu, T. Jiang and
J. Huang, Angew. Chem., Int. Ed., 2004, 43, 2415; (b) D. An,
L. B. Wu, B. G. Li and S. P. Zhu, Macromolecules, 2007, 40, 3388;
(c) J. Huang, A. Riisager, P. Wasserscheid and R. Fehrmann,
Chem. Commun., 2006, 4027.
3 (a) A. L. Revelli, F. Mutelet and J. N. Jaubert, J. Phys. Chem. B, 2010,
114, 8199; (b) M. B. Shiflett, A. M. S. Niehaus and A. Yokozeki,
J. Phys. Chem. B, 2011, 115, 3478; (c) S. Shunmugavel, S. Kegnaes,
J. Due-Hansen, T. A. Gretasdottir, A. Riisager and R. Fehrmann,
ECS Trans., 2010, 33, 117.
4 (a) B. L. Bhargava, Y. Yasaka and M. L. Klein, Chem. Commun.,
2011, 47, 6228; (b) P. Pollet, C. A. Eckert and C. L. Liotta, Chem.
Sci., 2011, 2, 609; (c) J. Dupont, R. F. de Souza and
P. A. Z. Suarez, Chem. Rev., 2002, 102, 3667; (d) T. L. Merrigan,
E. D. Bates, S. C. Dorman and J. H. Davis, Chem. Commun., 2000,
2051; (e) J. F. Huang, H. M. Luo, C. D. Liang, I. W. Sun,
G. A. Baker and S. Dai, J. Am. Chem. Soc., 2005, 127, 12784;
(f) J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper,
A. Finotello, D. L. Gin and R. D. Noble, Ind. Eng. Chem. Res.,
2009, 48, 2739; (g) M. D. Soutullo, C. I. Odom, B. F. Wicker,
C. N. Henderson, A. C. Stenson and J. H. Davis, Chem. Mater.,
2007, 19, 3581.
5 (a) J. L. Anderson, J. K. Dixon, E. J. Maginn and J. F. Brennecke,
J. Phys. Chem. B, 2006, 110, 15059; (b) J. Huang, A. Riisager,
R. W. Berg and R. Fehrmann, J. Mol. Catal. A: Chem., 2008,
279, 170.
6 (a) J. E. Bara, D. E. Camper, D. L. Gin and R. D. Noble, Acc.
Chem. Res., 2010, 43, 152; (b) J. E. Bara, C. J. Gabriel,
S. Lessmann, T. K. Carlisle, A. Finotello, D. L. Gin and
R. D. Noble, Ind. Eng. Chem. Res., 2007, 46, 5380;
(c) S. Y. Hong, J. Im, J. Palgunadi, S. D. Lee, J. S. Lee,
H. S. Kim, M. Cheong and K. D. Jung, Energy Environ. Sci.,
2011, 4, 1802.
7 (a) X. L. Yuan, S. J. Zhang and X. M. Lu, J. Chem. Eng. Data,
2007, 52, 1150; (b) L. Z. Zhai, Q. Zhong, C. He and J. Wang,
J. Hazard. Mater., 2010, 177, 807.
8 (a) A. Yokozeki and M. B. Shiflett, Energy Fuels, 2009, 23, 4701;
(b) M. B. Shiflett and A. Yokozeki, Energy Fuels, 2010, 24, 1001;
(c) M. B. Shiflett and A. Yokozeki, Ind. Eng. Chem. Res., 2010,
49, 1370.
9 L. B. Wu, D. An, J. Dong, Z. M. Zhang, B. G. Li and S. P. Zhu,
Macromol. Rapid Commun., 2006, 27, 1949.
10 (a) Y. Y. Jiang, Y. T. Wu, Z. Zhou, Z. Jiao, L. Li and Z. B. Zhang,
J. Phys. Chem. B, 2007, 111, 5058; (b) P. Luis, L. A. Neves,
C. A. M. Afonso, I. M. Coelhoso, J. G. Crespo, A. Garea and
A. Irabien, Desalination, 2009, 245, 485.
Fig. 5 Six consecutive cycles of SO2 absorption and release by
[E3mim][Tetz]. SO2 absorption was carried out at 20 1C and 1 bar
under SO2 (60 mlÀ1), and desorption was performed at 80 1C and 1 bar
under N2 (60 mlÀ1). Absorption, ; desorption,
.
observed products, there are physical and chemical interactions
between these dual functionalized ILs and acid SO2.
Fig. 5 shows the effect of time on the release of SO2 upon heating
[E3mim][Tetz]. It can be seen that the release of SO2 was essentially
complete within 15 min at 80 1C under bubbling N2. Fig. 5 also
reveals that SO2 absorption/desorption can be repeatedly recycled
without any loss of absorption capability, indicating that the
process of SO2 absorption by dual functionalized ILs is highly
reversible. Compared with other functionalized ILs such as
[TMG][lactate], the desorption of SO2 is not easy at 80 1C, and
the absorption capacity decreases during the recycling due to its
low stability and its strong interaction with SO2.6c
In summary, two kinds of dual functionalized ILs with
ether-functionalized cations and multiple-site tetrazole anions
have been developed to capture SO2 through a combination of
chemical and physical absorption. Thus, an extremely high
SO2 capacity was achieved via the multiple-site interactions
between the nitrogen atom in the tetrazole anion and the
oxygen atom in the ether chain of the cation with the sulfur
atom in the acid SO2. Furthermore, the captured SO2 was easy
to release by heating or bubbling N2 through these ILs. This
method using dual functionalized groups with multi-sites
interaction opens a door to achieve high capacity as well as
excellent reversibility to capture gases such as SO2, H2S, and
CO2 by ILs. We believe that this high, rapid, and reversible
process by dual functionalized ILs can provide a potential
alternative for SO2 capture.
11 C. M. Wang, G. K. Cui, X. Y. Luo, Y. J. Xu, H. R. Li and S. Dai,
J. Am. Chem. Soc., 2011, 133, 11916.
12 (a) C. M. Wang, X. Y. Luo, H. M. Luo, D. E. Jiang, H. R. Li and
S. Dai, Angew. Chem., Int. Ed., 2011, 50, 4918; (b) Y. Q. Zhang,
S. J. Zhang, X. M. Lu, Q. Zhou, W. Fan and X. P. Zhang,
Chem.–Eur. J., 2009, 15, 3003; (c) K. Fukumoto, M. Yoshizawa
and H. Ohno, J. Am. Chem. Soc., 2005, 127, 2398.
We acknowledge the support of the National Natural
Science Foundation of China (20976151, 21176205, and
13 J. Kviesis, J. Leicunaite, I. Klimenkovs, D. Zacs and
J. P. Kreismanis, C. R. Chimie, 2010, 13, 1335.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 2633–2635 2635