Journal of the American Chemical Society
Communication
Lett. 2007, 48, 4683. (h) Guo, H.; Mortensen, M. S.; O’Doherty, G. A.
Org. Lett. 2008, 10, 3149. (i) Yadav, J. S.; Rajendar, G.; Ganganna, B.;
Srihari, P. Tetrahedron Lett. 2010, 51, 2154.
provides the electron-withdrawing group in the aldehyde/
ketone oxidation state, which alleviates the necessity for redox
adjustments. The synthetic utility of this approach was
highlighted in a five-step synthesis of the C18−C28 fragment
of the polyene macrolide RK-397 in 48% overall yield. Finally,
we envision that this approach will find favor in a number of
synthetic applications that require either the aldehyde or ketone
oxidation state.8,9
(9) For the conversion of syn-1,3-dioxanes containing esters and
amides to the aldehydes, see: (a) Hung, D. T.; Nerenberg, J. B.;
Schreiber, S. L. J. Am. Chem. Soc. 1996, 118, 11054. (b) Hayes, C. J.;
Heathcock, C. H. J. Org. Chem. 1997, 62, 2678. (c) Hayakawa, H.;
Miyashita, M. Tetrahedron Lett. 2000, 41, 707. (d) Hunter, T. J.;
O’Doherty, G. A. Org. Lett. 2001, 3, 2777. (e) Garaas, S. D.; Hunter,
T. J.; O’Doherty, G. A. J. Org. Chem. 2002, 67, 2682. (f) Smith, C. M.;
O’Doherty, G. A. Org. Lett. 2003, 5, 1959. (g) Dineen, T. A.; Roush,
W. R. Org. Lett. 2004, 6, 2043. (h) Chandrasekhar, S.; Shyamsunder,
T.; Prakash, S. J.; Prabhakar, A.; Jagadeesh, B. Tetrahedron Lett. 2006,
47, 47. (i) Vincent, A.; Prunet, J. Synlett 2006, 2269. (j) Krishna, P. R.;
Srinivas, R. Tetrahedron: Asymmetry 2007, 18, 2197. (k) Yadav, J. S.;
Kumar, N. N.; Prasad, A. R. Synthesis 2007, 1175. (l) Chandrasekhar,
S.; Rambabu, C.; Reddy, A. S. Tetrahedron Lett. 2008, 49, 4476. (m) de
Lemos, E.; Poree, F. H.; Bourin, A.; Barbion, J.; Agouridas, E.; Lannon,
M. I.; Commercon, A.; Betzer, J. F.; Pancrazi, A.; Ardisson, J. Chem.
Eur. J. 2008, 14, 11092. (n) Sabitha, G.; Bhaskar, V.; Reddy, S. S. S.;
Yadav, J. S. Tetrahedron 2008, 64, 10207. (o) Yadav, J. S.; Sunitha, V.;
Reddy, B. V. S.; Gyanchander, E. Synthesis 2008, 2933. (p) Dittoo, A.;
Bellosta, V.; Cossy, J. Synlett 2008, 2459. (q) Palimkar, S. S.; Uenishi,
J. Org. Lett. 2010, 12, 4160.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, spectral data (including NOE data)
for all new compounds, and a CIF file for rac-2v. This material
AUTHOR INFORMATION
Corresponding Author
■
ACKNOWLEDGMENTS
■
We sincerely thank the National Institutes of Health (GM54623)
for generous financial support. We also thank the Royal Society
for a Wolfson Research Merit Award (P.A.E.). We acknowledge
Jean-Philippe Ebram for some preliminary studies with different
electron-withdrawing groups. We are also grateful to the EPSRC
National Mass Spectrometry Service Centre (Swansea, UK) for
high-resolution mass spectrometry.
(10) Geissman, T. A. Org. React. 1944, 2, 94.
(11) For quantification of the electrophilic reactivity of aldehydes,
see: Appel, R.; Mayr, H. J. Am. Chem. Soc. 2011, 133, 8240.
(12) For selected reviews of bismuth(III)-mediated transformations,
see: (a) Matano, Y.; Ikegami, T. In Organobismuth Chemistry; Suzuki,
H., Matano, Y., Eds.; Elsevier: New York, 2001; Chapter 5, pp 371−440.
(b) Leonard, N. M.; Wieland, L. C.; Mohan, R. S. Tetrahedron 2002, 58,
8373. (c) Roux, C. L.; Dubac, J. Synlett 2002, 181. (d) Gaspard-
Iloughmane, H.; Roux, C. L. Eur. J. Org. Chem. 2004, 2517.
(e) Bothwell, J. M.; Krabbe, S. W.; Mohan, R. S. Chem. Soc. Rev.
2011, 40, 4649.
(13) For a discussion of the mechanism of bismuth-mediated
etherification reactions and applications in synthesis, see: (a) Evans,
P. A.; Cui, J.; Gharpure, S. J.; Hinkle, R. J. Am. Chem. Soc. 2003, 125,
11456. (b) Evans, P. A.; Cui, J.; Gharpure, S. Org. Lett. 2003, 5, 3883.
(c) Evans, P. A.; Andrews, W. J. Tetrahedron Lett. 2005, 46, 5625.
(d) Evans, P. A.; Andrews, W. J. Angew. Chem., Int. Ed. 2008, 47, 5426.
(14) The oxocarbenium ion intermediate is additionally stabilized by
the triorganosilyl group.13
(15) Although silyl migration/cyclization is a major side reaction in
the base-catalyzed version using the tert-butyldimethylsilyl-protected
hydroxymethyl derivative (R1 = TBSOCH2, EWG = CO2Et), we
observed only a trace amount (≤5%) of triisopropylsilyl migration
(R1 = TIPSOCH2, EWG = COMe, 2u, 96%, ds ≥19:1) with the new
method. For more details, see: Hunter, T. J.; O’Doherty, G. A. Org.
Lett. 2001, 3, 1049.
(16) The stereochemistry of the syn-1,3-dioxanes rac-2a−v was
confirmed using nuclear Overhauser effect (NOE) experiments and
further supported by the X-ray crystal structure of rac-2v (see the
Supporting Information).
REFERENCES
■
(1) (a) Macrolide Antibiotics: Chemistry, Biology and Practice, 2nd ed.;
Omura, S., Ed.; Academic Press: San Diego, 2002. (b) Newman, D. J.;
Cragg, G. M. J. Nat. Prod. 2004, 67, 1216. (c) Hamilton-Miller,
J. M. T. Bacteriol. Rev. 1973, 37, 166. (d) Kotler-Brajtburg, J.; Medoff,
G.; Kobayashi, G. S.; Boggs, S.; Schlessinger, D.; Pandey, R. C.;
Rinehart, K. L. Antimicrob. Agents Chemother. 1979, 15, 716.
(2) For recent reviews of polyene macrolide syntheses, see:
(a) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021. (b) Thirsk, C.;
Whiting, A. J. Chem. Soc., Perkin Trans. 1 2002, 999.
(3) For recent reviews of oxocyclic macrolide syntheses, see:
(a) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.
(b) Pietruszka, J. Angew. Chem., Int. Ed. 1998, 37, 2629. (c) Yeung,
K. S.; Paterson, I. Angew. Chem., Int. Ed. 2002, 41, 4632. (d) Yeung,
K. S.; Paterson, I. Chem. Rev. 2005, 105, 4237. (e) Kang, E. J.; Lee, E.
Chem. Rev. 2005, 105, 4348.
(4) For selected stereoselective methods for the formation of 1,3-
diols, see: (a) Chen, K. M.; Hardtmann, G. E.; Prasad, K.; Repic, O.;
Shapiro, M. J. Tetrahedron Lett. 1987, 28, 155. (b) Sarraf, S. T.;
Leighton, J. L. Org. Lett. 2000, 2, 403. (c) Duan, J. J. W.; Smith, A. B.
III. J. Org. Chem. 1993, 58, 3703. (d) Herrmann, A. T.; Saito, T.;
Stivala, C. E.; Tom, J.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962.
(5) For recent reviews of syn-1,3-polyol syntheses, see: (a) Oishi, T.;
Nakata, T. Synthesis 1990, 635. (b) Schneider, C. Angew. Chem., Int.
Ed. 1998, 37, 1375. (c) Bode, S. E.; Wolberg, M.; Muller, M. Synthesis
2006, 557.
(6) Evans, D. A.; Gauchet-Prunet, J. A. J. Org. Chem. 1993, 58, 2446.
(7) For redox economy in organic synthesis, see: Burns, N. Z.;
Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed. 2009, 48, 2854.
(8) For the conversion syn-1,3-dioxanes containing esters and amides
to ketones, see: (a) Evans, D. A.; Coleman, P. J.; Dias, L. C. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2738. (b) Evans, D. A.; Trotter, B. W.;
Coleman, P. J.; Cote, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A. N.
Tetrahedron 1999, 55, 8671. (c) Evans, D. A.; Connell, B. T. J. Am.
Chem. Soc. 2003, 125, 10899. (d) Denmark, S. E.; Fujimori, S. J. Am.
Chem. Soc. 2005, 127, 8971. (e) Li, M. S.; O’Doherty, G. A. Org. Lett.
2006, 8, 3987. (f) Li, M. S.; O’Doherty, G. A. Org. Lett. 2006, 8, 6087.
(g) Chandrasekhar, S.; Rambabu, C.; Shyamsunder, T. Tetrahedron
(17) The minor diastereoisomer 3a interconverts to the more stable
syn-1,3-dioxane 2a, suggesting that the reaction proceeds under
thermodynamic control. This result contrasts with the previous
studies, which were under kinetic control.13c,d
(18) Deprotection of the ethylidene acetal to provide the syn-1,3-diol
can be readily accomplished using the following sequence: reduction
of the aldehyde rac-2k with sodium borohydride followed by
2858
dx.doi.org/10.1021/ja208668u | J. Am. Chem.Soc. 2012, 134, 2856−2859