Journal of the American Chemical Society
Communication
(4) Newman, S. G.; Lautens, M. J. Am. Chem. Soc. 2011, 133, 1778.
(5) For a relayed Pd-catalyzed intramolecular cyclization of an
iododiene, see: Liu, H.; Li, C.; Qiu, D.; Tong, X. J. Am. Chem. Soc.
2011, 133, 6187.
Scheme 4
(6) Allylic sulfides: (a) Hua, R.; Takeda, H.; Onozawa, S.-y.; Abe, Y.;
Tanaka, M. Org. Lett. 2007, 9, 263. Thiocyanates: (b) Kamiya, I.;
Kawakami, J.-i.; Yano, S.; Nomoto, A.; Ogawa, A. Organometallics
2006, 25, 3562. Thioester: (c) Hua, R.; Takeda, H.; Onozawa, S.-y.;
Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899. Thiocarbamate:
(d) Toyofuku, M.; Fujiwara, S.-i.; Shin-ike, T.; Kuniyasu, H.; Kambe, N.
J. Am. Chem. Soc. 2005, 127, 9706. Thioalkynes: (e) Arisawa, M.;
Igarashi, Y.; Tagami, Y.; Yamaguchi, M.; Kabuto, C. Tetrahedron Lett.
2011, 52, 920. Thirane: (f) Choi, N.; Kabe, Y.; Ando, W. Tetrahedron
Lett. 1991, 32, 4573. Thiophenes: (g) Grochowski, M. R.; Li, T.;
Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2010, 132, 12412.
(7) (a) Okamura, H. Tetrahedron Lett. 1980, 21, 87. (b) Wenkert, E.;
Ferreira, T. W.; Michelotti, E. L. J. Chem. Soc., Chem. Commun. 1979,
637. (c) Nakamura proposed the Ni(0)-catalyzed cleavage of an Ph−
SR bond in their recent report on alkenylative cross-coupling.
However, the resultant Ph−Ni species expels PhH as a byproduct.
See: Ishizuka, K.; Seike, H.; Hatakeyama, T.; Nakamura, M. J. Am.
Chem. Soc. 2010, 132, 13117−13119.
(3n → 7). Finally, conversion of 3a to the corresponding
sulfonium salt 8 and then reaction with Et2Zn under Ni
catalysis resulted in cross-coupling, leading to trisubstituted
alkene 9.20,21
(8) (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(b) Kuniyasu, H.; Kambe, N. Chem. Lett. 2006, 35, 1320.
In conclusion, we have developed a novel Rh(I)-catalyzed
carbothiolation of alkynes using simple aryl methyl sulfides.
The reaction is stereospecific, delivering single isomers of
alkenyl sulfide products. Importantly, we have demonstrated
that this new transformation is an example of AG recycling, in
that the initial methyl sulfide AG is embedded in the alkenyl
sulfide product, providing a versatile group for further synthetic
transformations. Given the robust nature of the process
(tolerance to temperature variation, scale, and incorporation
into cascade processes), the broad substrate scope, and the
ability to generate the bench-stable catalyst from simple and
readily available components, we believe that this new reaction
has the potential to find wide application in synthesis.
(9) (a) Willis, M. C. Chem. Rev. 2010, 110, 725. (b) Willis, M. C.;
McNally, S. J.; Beswick, P. J. Angew. Chem., Int. Ed. 2004, 42, 340.
(c) Willis, M. C.; Randell-Sly, H. E.; Woodward, R. L.; McNally, S. J.;
Currie, G. S. J. Org. Chem. 2006, 71, 5291. (d) Moxham, G. L.;
Randell-Sly, H.; Brayshaw, S. K.; Weller, A. S.; Willis, M. C. Chem.
́
Eur. J. 2008, 14, 8383. (e) Gonzalez-Rodríguez, C.; Pawley, R. J.;
Chaplin, A. B.; Thompson, A. L.; Weller, A. S.; Willis, M. C. Angew.
Chem., Int. Ed. 2011, 50, 5134.
(10) The geometry of the alkenyl sulfide was confirmed by single-
crystal XRD of the tosylhydrazone derivative of 3b [see the Supporting
Information (SI) for details].
(11) Kuniyasu, H.; Takekawa, K.; Yamashita, F.; Miyafuji, K.; Asano,
S.; Takai, Y.; Ohtaka, A.; Tanaka, A.; Sugoh, K.; Kurosawa, H.; Kambe,
N. Organometallics 2008, 27, 4788.
(12) See the SI for a discussion of the characterization data and
additional reactions to probe the mechanism.
(13) (a) Jones, W. D. Inorg. Chem. 2005, 44, 4475. (b) Vicic, D. A.;
Jones, W. D. J. Am. Chem. Soc. 1999, 121, 7606. (c) Garcia, J.; Mann,
B.; Adams, H.; Bailey, N.; Maitlis, P. J. Am. Chem. Soc. 1995, 117,
2179.
ASSOCIATED CONTENT
* Supporting Information
Experimental details, characterization data, and reactions of A
with excess alkyne. This material is available free of charge via
■
S
(14) (a) Curtis, M.; Druker, S. J. Am. Chem. Soc. 1997, 119, 1027.
(b) Hossain, M. M.; Lin, H.-M.; Shyu, S.-G. Organometallics 2003, 22,
3262. (c) Goh, L.; Tay, M.; Mak, T.; Wang, R. Organometallics 1992,
11, 1711.
(15) Pawley, R. J.; Moxham, G. L.; Dallanegra, R.; Chaplin, A. B.;
Brayshaw, S. K.; Weller, A. S.; Willis, M. C. Organometallics 2010, 29,
1717.
(16) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed. 2001, 40, 680.
(17) Trimerization of the alkyne was also observed. For a review, see:
Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901. Separate experi-
ments under the same conditions of temperature and concentration showed
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the EPSRC and the Xunta de Galicia (Angeles
■
́
Alvarino contract and an Estadias: 2009/188 and 2010/163 to
̃
that alkyne trimerization is catalyzed by A (333 K, 2.5 mol % A, t1/2
=
C.G.-R.) for support of this work, the Diamond Light Source
for an award of beamtime on I19, and Drs. Kirsten Christensen
and David R. Allan for support.
16 min). However, as minimal trimerization was observed under catalytic
conditions, it is not competitive with C−S bond cleavage of the ketone.
(18) Bichler, P.; Love, J. A. Top. Organomet. Chem. 2010, 31, 39.
(19) van Leeuwen, P. W. N. M.; Chadwick, J. C. Homogeneous
Catalysts: Activity−Stability−Deactivation; Wiley-VCH: Weinheim,
Germany, 2011.
(20) Srogl, J.; Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1997,
119, 12376.
(21) The alkene geometry in compound 9, resulting from an
inversion, was unexpected. The geometries of the alkenes in both 3a
and 9 were established using NOE experiments. The geometry of the
intermediate 8 was established using XRD (see the SI for details).
REFERENCES
■
(1) Modern Arylation Methods; Ackermann, L., Ed.; Wiley-VCH:
Weinheim, Germany, 2009.
(2) Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for the
21st Century; Wiley: Chichester, U.K., 2004.
(3) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
Ed. 2009, 48, 9792. (c) McGlacken, G. P.; Bateman, L. M. Chem. Soc.
Rev. 2009, 38, 2447.
2909
dx.doi.org/10.1021/ja2108992 | J. Am. Chem.Soc. 2012, 134, 2906−2909