O. R. Suárez-Castillo et al. / Tetrahedron: Asymmetry 22 (2011) 2085–2098
2097
(C5), 122.3 (C4), 109.6 (C7), 70.4 (C13), 57.7 (C14) 45.8 (C3), 43.4
References
(C8), 25.1 (C27); IR (KBr) mmax 3032, 2970, 2926, 1779, 1713,
1612, 1501, 1482, 1384, 1363 cmꢀ1; EIMS m/z (relative intensity)
426 ([M]+, 100), 249 (11), 237 (49), 223 (14), 77 (8), 51 (5); FAB-
HRMS m/z calcd for
427.1660.
1. (a) Kinashi, H.; Suzuki, Y.; Takeuchi, S.; Kawarada, A. Agric. Biol. Chem. 1976, 40,
2465–2470; (b) Suzuki, Y.; Kinashi, H.; Takeuchi, S.; Kawarada, A.
Phytochemistry 1977, 16, 635–637; (c) Ohmoto, T.; Yamaguchi, K.; Ikeda, K.
Chem. Pharm. Bull. 1988, 36, 578–581; (d) Dekker, T. G.; Fourie, T. G.; Matthee,
E.; Snyckers, F. O. Phytochemistry 1987, 26, 1845–1846; (e) Monde, K.; Sasaki,
K.; Shirata, A.; Takasugi, M. Phytochemistry 1991, 30, 2915–2917; (f) Zhang, H.-
p.; Kamano, Y.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Itokawa, H.; Pettit, G. R.
Tetrahedron 1995, 51, 5523–5528; (g) Fréchard, A.; Fabre, N.; Péan, C.; Montaut,
S.; Fauvel, M.-T.; Rollin, P.; Fourasté, I. Tetrahedron Lett. 2001, 42, 9015–9017;
(h) Emura, T.; Esaki, T.; Tachibana, K.; Shimizu, M. J. Org. Chem. 2006, 71, 8559–
8564.
2. (a) Morales-Ríos, M. S.; Suárez-Castillo, O. R.; Joseph-Nathan, P. Trends
Heterocycl. Chem. 1999, 6, 111–124; (b) Horne, S.; Taylor, N.; Collins, S.;
Rodrigo, R. J. Chem. Soc., Perkin Trans. 1 1991, 3047–3051; (c) Yu, Q.-s.; Luo, W.-
m.; Li, Y.-q. Heterocycles 1993, 36, 1279–1285; (d) Pallavicini, M.; Valoti, E.;
Villa, L.; Resta, I. Tetrahedron: Asymmetry 1994, 5, 363–370; (e) Pei, X.-F.; Bi, S.
Heterocycles 1994, 39, 357–360; (f) Matsuura, T.; Overman, L. E.; Poon, D. J. J.
Am. Chem. Soc. 1998, 120, 6500–6503; (g) Morales-Ríos, M. S.; Suárez-Castillo,
O. R. Nat. Prod. Commun. 2008, 3, 629–642; (h) Kawasaki, T.; Terashima, R.;
Sakaguchi, K.-e.; Sekiguchi, H.; Sakamoto, M. Tetrahedron Lett. 1996, 37, 7525–
7528; (i) Morales-Ríos, M. S.; Rivera-Becerril, E.; Joseph-Nathan, P. Tetrahedron:
Asymmetry 2005, 16, 2493–2499; (j) Suárez-Castillo, O. R.; Sánchez-Zavala, M.;
Meléndez-Rodríguez, M.; Castelán-Duarte, L. E.; Morales-Ríos, M. S.; Joseph-
Nathan, P. Tetrahedron 2006, 62, 3040–3051; (k) Suárez-Castillo, O. R.; Sánchez-
Zavala, M.; Meléndez-Rodríguez, M.; Aquino-Torres, E.; Morales-Ríos, M. S.;
Joseph-Nathan, P. Heterocycles 2007, 71, 1539–1551; (l) Kawasaki, T.; Shinada,
M.; Kamimura, D.; Ohzono, M.; Ogawa, A. Chem. Commun. 2006, 420–422.
3. Suárez-Castillo, O. R.; Meléndez-Rodríguez, M.; Castelán-Duarte, L. E.; Sánchez-
Zavala, M.; Rivera-Becerril, E.; Morales-Ríos, M. S.; Joseph-Nathan, P.
Tetrahedron: Asymmetry 2009, 20, 2374–2389.
C
26H23N2O4 ([M+1]+): 427.1658, found:
4.2.12. (S)-3-(2-((S)-3-Methyl-2-oxo-1-phenylindolin-3-yl)-
acetyl)-4-phenyloxazolidin-2-one (3S,14S)-6e
Prepared from 5e as white crystals (0.023 g, 15%), mp: 181–
182 °C (MeOH). ½a D20
ꢃ
¼ þ200:0 (c 2.0, CHCl3). 1H NMR (400 MHz,
CDCl3): d 7.45 (2H, br t, J = 7.7 Hz, H23, H25), 7.35 (1H, br t,
J = 7.5 Hz, H24), 7.30–7.25 (3H, m, H4, H22, H26), 7.18–7.15 (3H,
m, H17–H19), 7.11 (1H, td, J = 7.7, 1.4 Hz, H6), 7.02 (1H, td,
J = 7.4, 0.7 Hz, H5), 6.85 (2H, m, H16, H20), 6.62 (1H, br d,
J = 7.8 Hz, H7), 5.28 (1H, dd, J = 8.6, 3.5 Hz, H14), 4.59 (1H, t,
J = 8.6 Hz, H13A), 4.12 (1H, dd, J = 9.0, 3.6 Hz, H13B), 4.16 and
3.39 (2H, AB, J = 16.9 Hz, H8), 1.51 (3H, s, H27); 13C NMR
(100 MHz, CDCl3): d 179.8 (C2), 169.0 (C9), 154.1 (C11), 144.1
(C7a), 138.6 (C15), 135.1 (C21), 132.8 (C3a), 129.7 (2C, C23, C25),
129.2 (2C, C17,19), 128.4 (C18), 128.2, 128.1 (2C, C6, C24), 127.1
(2C, C22, C26), 125.5 (2C, C16, C20), 122.9 (C5), 122.6 (C4), 109.8
(C7), 70.3 (C13), 57.6 (C14) 46.2 (C3), 42.6 (C8), 25.1 (C27); IR
(KBr) mmax 2919, 1779, 1716, 1612, 1596, 1502, 1482, 1467, 1455,
1384, 1363, 1330, 1303, 1204 cmꢀ1; EIMS m/z (relative intensity)
426 ([M]+, 100), 249 (8), 237 (39), 223 (8), 77 (8), 51 (7); FABHRMS
m/z calcd for C26H23N2O4 ([M+1]+): 427.1658, found: 427.1654.
4. (a) Kouko, T.; Matsumura, K.; Kawasaki, T. Tetrahedron 2005, 61, 2309–2318;
(b) Boteju, L. W.; Wegner, K.; Qian, X.; Hruby, J. V. Tetrahedron 1994, 50, 2391–
2404; (c) Davies, S. G.; Sanganee, H. J. Tetrahedron: Asymmetry 1995, 6, 671–
674; (d) Palomo, C.; Aizpurua, J. M.; Mielgo, A.; Linden, A. J. Org. Chem. 1996, 61,
9186–9195; (e) Hosokawa, T.; Yamanaka, T.; Itotani, M.; Murahashi, S.-I. J. Org.
Chem. 1995, 60, 6159–6167; (f) Akiba, T.; Tamura, O.; Hashimoto, M.;
Kobayashi, Y.; Katoh, T.; Nakatani, K.; Kamada, M.; Hayakawa, I.; Terashima,
S. Tetrahedron 1994, 50, 3905–3914; (g) Davies, I. W.; Senanayake, C. H.;
Castonguay, L.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett.
1995, 36, 7619–7622.
4.3. VCD measurements
VCD spectra were measured using a BioTools BOMEM ChiralIR
spectrophotometer equipped with a dual photoelastic modulation.
Samples of diastereomers (3S,14S)-6a, (3R,14S)-6a, (3R,14R)-6a,
5. (a) Pirkle, W. H.; Simmons, K. A. J. Org. Chem. 1983, 48, 2520–2527; (b) Pridgen,
L. N.; De Brosse, C. J. Org. Chem. 1997, 62, 216–220.
and (3S,14R)-6a were dissolved in 150
lL of CDCl3, placed in a
6. (a) Morales-Ríos, M. S.; Rivera-Becerril, E.; González-Juárez, D. E.; García-
Vázquez, J. B.; Trujillo-Serrato, J. J.; Hernández-Barragán, A.; Joseph-Nathan, P.
Nat. Prod. Commun. 2011, 6, 457–464; (b) Lakshmaiah, G.; Kawabata, T.; Shang,
M.; Fuji, K. J. Org. Chem. 1999, 64, 1699–1704; (c) Miyamoto, H.; Okawa, Y.;
Nakazaki, A.; Kobayashi, S. Tetrahedron Lett. 2007, 48, 1805–1808; (d) Walker,
G. N.; Alkalay, D.; Smith, R. T. J. Org. Chem. 1965, 30, 2973–2983.
7. (a) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M. J.
Org. Chem. 1986, 51, 2370–2374; (b) Hori, K.; Hikage, N.; Inagaki, A.; Mori, S.;
Nomura, K.; Yoshii, E. J. Org. Chem. 1992, 57, 2888–2902.
BaF2 cell with a path length of 100
l
m and data were acquired at
a resolution of 4 cmꢀ1 during 4 h. For (3S,14S)-6a, (3R,14R)-6a
and (3S,14R)-6a 5.0 mg were used, while for (3R,14S)-6a, 5.2 mg
were measured. Baseline corrections were done either by subtract-
ing the individual spectra of (3S,14S)-6a, (3R,14S)-6a, (3R,14R)-6a,
and (3S,14R)-6a from the solvent or from a 5 mg samples of their
respective racemic mixture in 150 lL of CDCl3.
8. Yabuuchi, T.; Kusumi, T. J. Org. Chem. 2000, 65, 397–404.
9. Shaye, N. A.; Eames, J. Tetrahedron Lett. 2010, 51, 5892–5895.
10. (a) Osman, F. H.; El-Samahy, F. A. Phosphorus, Sulfur Silicon 1998, 134/135,
437ꢀ446; (b) Aldrich/ACD Library of FT NMR Spectra Pro. Advanced Chemistry
Development, Inc. and Aldrich Chemical Company, Inc. V. 1.00, 1998.
11. Taaning, R. H.; Lindsay, K. B.; Schiøtt, B.; Daasbjerg, K.; Skrydstrup, T. J. Am.
Chem. Soc. 2009, 131, 10253–10262.
12. Kitoh, S.; Senda, H.; Kunimoto, K.-K.; Maeda, S.; Kuwae, A.; Hanai, K. Cryst. Res.
Technol. 2004, 39, 375–381.
13. Chang, G.; Guida, W. C.; Still, W. C. J. Am. Chem. Soc. 1989, 111, 4379–4386.
14. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital
Theory; Wiley: New York, 1986.
15. (a) Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70,
560–571; (b) Andzelm, J.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280–1303.
16. (a) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996,
104, 5497–5509; (b) Cerda-García-Rojas, C. M.; Catalán, C. A. N.; Muro, A. C.;
Joseph-Nathan, P. J. Nat. Prod. 2008, 71, 967–971.
17. (a) Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519; (b) Halgren, T. A. J.
Comput. Chem. 1996, 17, 520–552; (c) Halgren, T. A. J. Comput. Chem. 1996, 17,
553–586; (d) Halgren, T. A.; Nachbar, R. B. J. Comput. Chem. 1996, 17, 587–615;
(e) Halgren, T. A. J. Comput. Chem. 1996, 17, 616–641.
4.4. X-ray diffraction analyses
Data collections for (3S,14S)-6a, (3R,14R)-6a and (3S,14S)-6d
were carried out on a Bruker-Nonius CAD4 diffractometer while
those for (3R,14S)-6e and (3S,14S)-6e were done on a Agilent Tech-
nologies Gemini A CCD diffractometer using Cu/K
a radiation
(k = 1.54184 Å). The structures were solved by direct methods
using the SHELXS-9724 program included in the WINGX v1.6 pack-
age.25 Structural refinements were carried out by full-matrix least
squares on F2. The non-hydrogen atoms were treated anisotropi-
cally, and the hydrogen atoms, included in the structure factor cal-
culation, were refined isotropically. Atomic coordinates, bond
lengths, bond angles, and anisotropic thermal parameters are in
deposit at the Cambridge Crystallographic Data Center. Table 4
summarizes the relevant data.
18. As implemented in the computer package SPARTAN04, Windows
Wavefunction Inc.: Irvine, CA, USA, 2004.
v 1.0.1;
19. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
Acknowledgments
We are pleased to acknowledge the financial support from
CONACYT (Mexico) grants 83723 and 84453. L.E.C.D. and E.A.Z.E.
thank CONACYT for fellowships 186031, 58994 (for L.E.C.D.) and
237631 (for E.Z.E.).