Organometallics
Article
954, 930, 916, 903. HRMS (m/z): calcd for C2H11B9ReO3 [M−]
367.1075, found 367.1080. When PhS(O2)SPh was used
instead of Ph2S2, the reaction mixture became clear at 15−20
°C and the remaining procedure and yield were the same.
Method 2. To a solution of 2a (0.20 g, 0.31 mmol) and Ph2S2 (0.07
g, 0.31 mmol) in 7.0 mL of benzene were added 7.0 mL of H2O2 (30%
solution) and 70 μL of acetic acid, and the solution was heated to
reflux for 3 h. The yellowish-orange organic phase was extracted with
methylene chloride (20 mL twice), dried with Na2SO4, and rotary
evaporated to remove the solvent. The residue was column
chromotographed starting with hexane and ethylacetate in a gradient
fashion up to 50%. Yield: 0.08 g (42%). PhS(O2)SPh and
[Bu4N][ReO4] were obtained as byproducts in this reaction.
Synthesis of [Bu4N][(7,8-Me2-η1-C2B9H11)ReO3] (1b). To a
solution of 2b (0.17 g, 0.25 mmol) and Ph2S2 (0.04 g, 0.25 mmol) in
11.0 mL of benzene were added 5.0 mL of H2O2 (30% solution) and
40 μL of acetic acid, and the solution was heated to reflux. After 5 and
7.5 h two lots of H2O2 (4.5 mL) and acetic acid (30 μL) were added,
and the reaction mixture was refluxed further until the disappearance
of peaks in the 11B{1H} NMR corresponding to 2b . The yellowish-
orange organic phase was extracted with methylene chloride (20 mL
twice), dried with Na2SO4, and rotary evaporated to remove the
solvent. The solid obtained was washed with hexane twice (50 mL
each) to remove the iodobenzene and PhS(O2)SPh. It was dissolved in
THF and recrystallized by the solvent diffusion method by using
pentane as diffusing solvent to give 1b as bright yellow crystals. Yield:
0.03 g (33%). 1H NMR (500 MHz, CD2Cl2): δ 3.11 (t, 8H); 1.61 (m,
8H); 1.51 (s, 6H); 1.42 (m, 8H); 1.00 (t, 12H). 13C{1H} NMR (125
MHz, CD2Cl2): δ 72.9 (C(CH3)2 of dicarbollide), 59.5, 24.4, 22.6
(C(CH3)2 of dicarbollide) 20.3, 13.9. 11B{1H} NMR (160 MHz,
CD2Cl2): δ −4.1 (1B), −7.2 (3B), −8.8 (2B), −12.8 (2B), −24.9
(1B). IR ν (Nujol): 2962, 2933, 2876, 2554, 2530, 1469, 954, 929,
916, 901. HRMS (m/z): calcd for C4H15B9ReO3 [M−] 397.1416,
found 397.1412.
REFERENCES
■
̆
(1) (a) Romao, C. C.; Kuhn, F. E.; Herrmann, W. A. Chem. Rev.
̈
1997, 97, 3197. (b) Espenson, J. H. Chem. Commun. 1999, 479.
(c) Owens, G. S.; Arias, J.; Abu-Omar, M. M. Catal. Today 2000, 55,
317.
(2) (a) Kuhn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet.
̈
Chem. 2004, 689, 4149. (b) Abu-Omar, M. M.; Appleman, E. H.;
Espenson, J. H. Inorg. Chem. 1996, 35, 7751.
(3) Rost, A. M. J.; Schneider, H.; Zoller, J. P.; Herrmann, W. A.;
Kuhn, F. E. J. Organomet. Chem. 2005, 690, 4712.
(4) (a) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A 2003, 198.
̈
̆
(b) Royo, B.; Romao, C. C. J. Mol. Catal. A: Chem. 2005, 237, 107.
(c) Ison, E. A.; Trivedi, E. R.; Corbin, R. A.; Abu-Omar, M. M. J. Am.
Chem. Soc. 2005, 127, 15374. (d) Du, G.; Abu-Omar, M. M. Curr. Org.
Chem. 2008, 12, 1185.
(5) (a) Nolin, K. A.; Krumper, J. R.; Pluth, M. D.; Bergman, R. G.;
Toste, F. D. J. Am. Chem. Soc. 2007, 129, 14684. (b) Du, G.; Fanwick,
P. E.; Abu-Omar, M. M. J. Am. Chem. Soc. 2007, 5180. (c) Nolin, K.
A.; Ahn, R. W.; Kobayashi, Y.; Kennedy-Smith, J. J.; Toste, F. D. Chem.
Eur. J. 2010, 16, 9555.
(6) (a) Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118,
9448. (b) Ahmad, I.; Chapman, G.; Nicholas, K. M. Organometallics
2011, 30, 2810.
(7) Gable, K. P.; Zhuravlev, F. A. J. Am. Chem. Soc. 2002, 124, 3970.
(8) Hawthorne, M. F.; Andrews, T. D. J. Am. Chem. Soc. 1965, 87,
2496.
(9) Fischer, M. J.; Jelliss, P. A.; Phifer, L. M.; Rath, N. P. Inorg. Chim.
Acta 2005, 358, 1531.
(10) Abu-Omar, M. M. Chem. Commun. 2003, 2102.
(11) Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg.
Chem. 2009, 48, 9998.
(12) Kim, J.-H.; Hong, E.; Kim, J.; Do, Y. Inorg. Chem. 1996, 35,
5112.
(13) Ellis, D. D.; Jelliss, P. A.; Stone, F. G. A. Organometallics 1999,
18, 4982.
(14) Kim, S.; Kim, S.; Otsuka, N.; Ryu, I. Angew. Chem., Int. Ed. 2005,
44, 6183.
(15) Herrmann, W. A.; Voss, E.; Floel, M. J. Organomet. Chem. 1985,
296, C5.
Computational Methods. The geometry optimization of
compounds 1 and 2 was done using the x, y, z coordinates from
their corresponding crystal structures reported in this paper as well as
from the Cambridge database.28 We used the DFT method based on
the B3LYP density functional model and LANL2DZ basis sets within
the Gaussian 09 suite of programs.19
̈
(16) Zalkin, A.; Hopkins, T. E.; Templeton, D. H. Inorg. Chem. 1966,
5, 1189.
ASSOCIATED CONTENT
* Supporting Information
■
(17) Kuhn, F. E.; Herrmann, W. A.; Hahn, R.; Elison, M.; Blumel, J.;
Herdtweck, E. Organometallics 1994, 13, 1601.
̈
̈
S
Experimental details of hydrosilylation, spectral details, tables
for X-ray crystallography of 2b, 1a, and 1b, DFT details (pdf),
and X-ray crystallographic data (CIF) of 2b, 1a, and 1b. This
material is available free of charge via the Internet at http://
(18) Burrell, A. K.; Cotton, F. A.; Daniels, L. M.; Petricek, V. Inorg.
Chem. 1995, 34, 4253.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; ;
Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;
Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09;
Gaussian, Inc.: Wallingford, CT, 2009.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Funding for this research was provided by DOE-BES, grant no.
DE-FG-02-06ER15794. We thank Dr. Alice Rene and Prof.
Dennis H. Evans of Purdue University for their help with the
(20) (a) McMaster, J.; Portius, P.; Ball, G. E.; Rourke, J. P.; George,
M. W. Organometallics 2006, 25, 5242. (b) Chong, D.; Laws, D. R.;
Nafady, A.; Costa, P. J.; Rheingold, A. L.; Calhorda, M. J.; Geiger, W.
E. J. Am. Chem. Soc. 2008, 130, 2692. (c) Kuehn, F. E.; Herrmann, W.
A.; Hahn, R.; Elison, M.; Bluemel, J.; Herdtweck, E. Organometallics
1994, 13, 1601.
electrochemistry experiments. We thank Prof. Hilkka Kentta-
̈
maa and Dr. Nelson Venueza of Purdue University for their
help with the mass spectrometry measurements. We thank Mr.
Zhi Cao of Purdue University for useful discussions on DFT.
This research was supported through computational resources
provided by Information Technology at Purdue−Rosen Center
for Advanced Computing, West Lafayette, Indiana.
(21) Santos, A. M.; Kuhn, F. E.; Xue, W.-M.; Herdtweck, E. J. Chem.
̈
Soc., Dalton Trans. 2000, 3570.
1895
dx.doi.org/10.1021/om201222r | Organometallics 2012, 31, 1888−1896