ORGANIC
LETTERS
2012
Vol. 14, No. 6
1366–1369
Cu-Promoted [2 þ 2] Cycloaddition
of 1,4-Bisallenes
Shinji Kitagaki,* Mikihito Kajita, Syu Narita, and Chisato Mukai*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and
Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
kitagaki@p.kanazawa-u.ac.jp; cmukai@kenroku.kanazawa-u.ac.jp
Received October 24, 2011
ABSTRACT
The thermal reaction of 1,4-bisallenes with the aid of Cu salt/amine significantly suppressed the formal [3,3] sigmatropic rearrangement resulting
in the highly selective formation of the bicyclo[4.2.0]octadiene framework. This reaction could be applied to the one-pot synthesis of bicyclo-
ꢀ
[4.2.0]octadienes from 1,5-hexadiynes via the Crabbe homologation.
The allene functionality is well-known to serve as a
powerful π-component in the [2 þ 2] czycloaddition.1 There
are many examples of efficient constructions of bicyclo-
[n.2.0] skeletons based on the thermal, photochemical,
or metal-catalyzed intramolecular [2 þ 2] cycloaddition
of alleneꢀalkenes2 and alleneꢀalkynes.3 The analogous
alleneꢀallenes (1,n-bisallenes) I (n = 3ꢀ7) selectively
produced bicyclo[n.2.0]alkadienes II or dimethylene-
bicyclo[n-2.2.0]alkanes III upon exposure to thermal or
metal-catalyzed conditions (Scheme 1).4ꢀ7 The 1,4-bisallene
(exemplified by 1a), however, has often been found
to provide the [2 þ 2] cycloadduct 3a in low yield under
thermal conditions due to the preferential formation of the
formal [3,3]-sigmatropic rearrangement product 4a via the
biradical intermediate 2a.8 Thus, it is obvious that no
(3) For recent examples of thermal reaction, see: (a) Brummond,
K. M.; Osbourn, J. M. Beilstein J. Org. Chem. 2011, 7, 601–605. (b)
Siebert, M. R.; Osbourn, J. M.; Brummond, K. M.; Tantillo, D. J. J. Am.
Chem. Soc. 2010, 132, 11952–11966. (c) Ovaska, T. V.; Kyne, R. E.
Tetrahedron Lett. 2008, 49, 376–378. (d) Mukai, C.; Hara, Y.; Miyashita,
Y.; Inagaki, F. J. Org. Chem. 2007, 72, 4454–4461. (e) Jiang, X.; Ma, S.
Tetrahedron 2007, 63, 7589–7595. (f) Oh, C. H.; Gupta, A. K.; Park,
D. I.; Kim, N. Chem. Commun. 2005, 5670–5672. For recent examples of
metal-catalyzed reaction, see: (g) Alcaide, B.; Almendros, P.; Aragoncillo, C.
Chem.;Eur. J. 2009, 15, 9987–9989. (h) Saito, N.; Tanaka, Y.; Sato, Y.
Org. Lett. 2009, 11, 4124–4126. (i) Oh, C. H.; Kim, A. Synlett 2008, 777–
781. (j) Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Synlett
2006, 575–578. (k) Oh, C. H.; Park, D. I.; Jung, S. H.; Reddy, V. R.;
Gupta, A. K.; Kim, Y. M. Synlett 2005, 2092–2094. (l) Ohno, H.;
Mizutani, T.; Kadoh, Y.; Miyamura, K.; Tanaka, T. Angew. Chem.,
Int. Ed. 2005, 44, 5113–5115. (m) Cao, H.; Van Ornum, S. G.;
Deschamps, J.; Flippen-Anderson, J.; Laib, F.; Cook, J. M. J. Am.
Chem. Soc. 2005, 127, 933–943. (n) Shen, Q.; Hammond, G. B. J. Am.
Chem. Soc. 2002, 124, 6534–6535.
(4) For 1,3-bisallenes, see: (a) Garratt, P. J.; Neoh, S. B. J. Am.
Chem. Soc. 1975, 97, 3255–3257. (b) Bui, B. H.; Schreiner, P. R. Eur. J.
Org. Chem. 2006, 4187–4192.
(5) For 1,5-bisallenes, see: (a) Jiang, X.; Cheng, X.; Ma, S. Angew.
Chem., Int. Ed. 2006, 45, 8009–8013. (b) Lu, P.; Ma, S. Chin. J. Chem.
2010, 28, 1600–1606. (c) Hong, Y.-T.; Yoon, S.-K.; Kang, S.-K.; Yu,
C.-M. Eur. J. Org. Chem. 2004, 4628–4635. (d) Kim, S. M.; Park, J. H.;
Kang, Y. K.; Chung, Y. K. Angew. Chem., Int. Ed. 2009, 48, 4532–4535.
(6) For 1,6-bisallenes, see: Shimizu, T.; Sakamaki, K.; Kamigata, N.
Tetrahedron Lett. 1997, 38, 8529–8532. See also ref 5b.
(1) (a) Murakami, M.; Matsuda, T. Cycloadditions of Allenes. In
Modern Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.; Wiley-VCH:
Weinheim, 2004; Vol. 2, pp 727ꢀ816. (b) Ma, S. Chem. Rev. 2005, 105,
2829–2872. (c) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Soc.
Rev. 2010, 39, 783–816. (d) Aubert, C.; Fensterbank, L.; Garcia, P.;
Malacria, M.; Simonneau, A. Chem. Rev. 2011, 111, 1954–1993.
(2) For recent examples of thermal reaction, see: (a) Ohno, H.;
Mizutani, T.; Kadoh, Y.; Aso, A.; Miyamura, K.; Fujii, N.; Tanaka, T.
J. Org. Chem. 2007, 72, 4378–4389. (b) Alcaide, B.; Almendros, P.;
Aragoncillo, C.; Redondo, M. C.; Torres, M. R. Chem.;Eur. J. 2006,
12, 1539–1546. (c) Hansen, T. V.; Skattebøl, L.; Stenstrøm, Y. Tetra-
hedron 2003, 59, 3461–3466. (d) Padwa, A.; Lipka, H.; Watterson, S. H.;
Murphree, S. S. J. Org. Chem. 2003, 68, 6238–6250. For recent examples
of photochemical reaction, see: (e) Lutteke, G.; Kleinnijenhuis, R. A.;
Jacobs, I.; Wrigstedt, P. J.; Correia, A. C. A.; Nieuwenhuizen, R.; Hue,
B. T. B.; Goubitz, K.; Peschar, R.; van Maarseveen, J. H.; Hiemstra, H.
Eur. J. Org. Chem. 2011, 3146–3155. (f) Miao, R.; Gramani, S. G.; Lear,
M. J. Tetrahedron Lett. 2009, 50, 1731–1733. (g) Winkler, J. D.; Ragains,
J. R. Org. Lett. 2006, 8, 4031–4033. For recent examples of metal-
ꢀ
catalyzed reaction, see: (h) Gulıas, M.; Collado, A.; Trillo, B.; Lopez, F.;
~
~
Onate, E.; Esteruelas, M. A.; Mascarenas, J. L. J. Am. Chem. Soc. 2011,
133, 7660–7663. (i) Alcarazo, M.; Stork, T.; Anoop, A.; Thiel, W.;
€
Furstner, A. Angew. Chem., Int. Ed. 2010, 49, 2542–2546. (j) Zhao, J.-F.;
Loh, T.-P. Angew. Chem., Int. Ed. 2009, 48, 7232–7235. (k) Luzung,
ꢀ
M. R.; Mauleon, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12402–
12403.
r
10.1021/ol300096u
Published on Web 02/24/2012
2012 American Chemical Society