Ru(bpy)3þ complex7 to a Lewis acid activated enone. The
one-electron reduction of aryl enones is significantly more
facile than the corresponding reduction of less-conjugated
enone substrates. Enoate esters, for example, possess
reduction potentials ca. 700 mV more negative than
aryl enones,8 which precludes formation of the corre-
sponding enoate radical anions under these photocatalytic
conditions.
Table 1. Dimerizations of Candidate Enonesa
Scheme 1. Mechanism of Radical Anion [2 þ 2] Cycloaddition
a Reactions performed with 5% Ru(bpy)3Cl2, 2.0 equiv of LiBF4,
and 2.0 equiv of i-Pr2NEt in 0.1 M MeCN. Molar ratios for intermo-
lecular dimerizations calculated with respect to theoretical yield of
product (e.g., 2.5 mol % catalyst with respect to enone).
Upon exposure to the conditions we had optimized for
intermolecular [2 þ 2] cycloaddition of aryl enones, un-
saturated acyl phosphonates11 underwent rapid decompo-
sition (entry 1). N-Acyl pyrroles12 and pyrazoles13 reacted
sluggishly and gave unsatisfactory yields of the correspond-
ing dimerized cyclobutanes (entries 2 and 3). On the
other hand, R,β-unsaturated 2-acylimidazoles14 reacted
smoothly and furnished the desired [2 þ 2] cyclodimer in
82% yield.15 We therefore elected to continue our studies
using enones bearing an N-methylimidazol-2-yl auxiliary
group.
Next, we studied the crossed intermolecular [2 þ 2]
cyclization of acyl imidazole 1 with methyl acrylate
(Table 2). The conditions we had previously reported for
[2 þ 2] cycloaddition of phenyl enones withmethyl acrylate
afforded only 43% of the desired crossed cycloadduct in
5:1 dr (entry 1); the undesired homodimerization of 1 was a
significant competitive process. Higher concentrations of
We wondered if we might circumvent this limitation
in scope by installing a cleavable auxiliary group onto
the enone substrate that (1) would facilitate one-electron
reduction and subsequent cycloaddition of the enone sub-
strate and (2) could be transformed into a carboxylic acid,
ester, amide, or similar carbonyl-containing functional
group after the cycloaddition. This cleavable group might
be considered a “redox auxiliary”9,10 that temporarily
modulates the reduction potential of an otherwise redox-
inactive enoate substrate, just as a chiral auxiliary tempo-
rarily differentiates the prochiral faces of an otherwise
achiral substrate.
Table 1 summarizes our studies to identify a suitable
redox auxiliary for the [2 þ 2] cycloaddition. We examined
the homodimerization of a number of R,β-unsaturated
carbonyl compounds that have been validated as surro-
gates of carboxylate esters in other synthetic methods.
(12) Lee, S. D.; Brook, M. A.; Chan, T. H. Tetrahedron Lett. 1983, 24,
1569–1572. (b) Kinoshita, T.; Okada, S.; Park, S. R.; Matsunaga, S.;
Shibasaki, M. Angew. Chem., Int. Ed. 2003, 42, 4680–4684. (c) Shaghafi,
M. B.; Kohn, B. L.; Jarvo, E. R. Org. Lett. 2008, 10, 4743–4746.
(13) Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc.
1998, 120, 6615–6616. (b) Itoh, K.; Kanemasa, S. J. Am. Chem. Soc.
2002, 124, 13394–13395. (c) Ishihara, K.; Fushimi, M. Org. Lett. 2006, 8,
1921–1924. (d) Sibi, M. P.; Itoh, K. J. Am. Chem. Soc. 2007, 129, 8064–
8065.
(14) (a) Davies, D. H.; Haire, N. A.; Hall, J.; Smith, E. H. Tetra-
hedron 1992, 48, 7839–7856. (b) Evans, D. A.; Song, H.-J.; Fandrick,
K. R. Org. Lett. 2006, 8, 3351–3354. (c) Andrus, M. B.; Christiansen,
M. A.; Hicken, E. J.; Gainer, M. J.; Bedke, D. K.; Harper, S. R.;
Dodson, D. S.; Harris, D. T. Org. Lett. 2007, 9, 4865–4868. (d) Evans,
D. A.; Fandrick, K. R.; Song, H. J.; Scheidt, K. A.; Xu, R. J. Am. Chem.
Soc. 2007, 129, 10029–10041. (e) Trost, B. M.; Lehr, K.; Michaelis, D. J.;
Xu, J.; Buckl, A. K. J. Am. Chem. Soc. 2010, 132, 8915–8917.
(15) Consistent with this observation, cyclic voltammetry revealed
that the R,β-unsaturated 2-acylimidazole reduces at a significantly less
negative peak potential than the other test substrates depicted in Table 1.
See the Supporting Information for details of these electrochemical
measurements.
(8) House, H. O.; Huber, L. E.; Umen, M. J. J. Am. Chem. Soc. 1972,
94, 8471–8475.
(9) Facilitation of electrochemical reactions using a noncleavable
redox-active group has been termed a 00redox tag00 strategy by Chiba. See:
(a) Okada, Y.; Akaba, R.; Chiba, K. Org. Lett. 2009, 11, 1033–1035.
(b) Okada, Y.; Nishimoto, A.; Akaba, R.; Chiba, K. J. Org. Chem. 2011,
76, 3470–3476.
(10) Similarly, facilitation of electrochemical reactions using a silyl
or stannyl electrofugal group has been termed an 00electroauxiliary00
approach by Yoshida. See: (a) Yoshida, J.; Takada, K.; Ishichi, Y.; Isoe,
S. J. Chem. Soc., Chem. Commun. 1994, 2361–2362. (b) Yoshida, J.;
Nishiwaki, K. J. Chem. Soc., Dalton Trans. 1998, 2589–2596.
(11) Evans, D. A.; Johnson, J. S. J. Am. Chem. Soc. 1998, 120, 4895–
4896. (b) Evans, D. A.; Scheidt, K. A.; Fandrick, K. R.; Lam, H. W.;
Wu., J. J. Am. Chem. Soc. 2003, 125, 10780–10781. (c) Takenaka, N.;
Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2007, 129, 742–743.
(d) Samanta, S.; Zhao, C.-G. J. Am. Chem. Soc. 2006, 128, 7442–7443.
~
(e) Jiang, H.; Paixao, M. W.; Monge, D.; Jørgensen, K. A. J. Am. Chem.
Soc. 2010, 132, 2775–2783.
Org. Lett., Vol. 14, No. 4, 2012
1111