10.1002/chem.201705939
Chemistry - A European Journal
COMMUNICATION
Additional characterization was carried out via NMR
spectroscopy, with the spectrum of the octamer 9c depicted in
Figure 3 (refer to the Supporting Information Figure S15 and S17
for 9a and 9b). A proton resonance between 6.00-5.84 (64) and
5.04-5.00 ppm (44) was assigned to the chiral methine group
adjacent to the phenyl ring introduced upon formation of the tetra-
substituted oligomer 7 via P-3CR as well as to the methine group
introduced during the Passerini linker 5 formation, as was already
observed for the tetramer 7 (refer to the Supporting Information
for comparison). Successful formation of the isoindole structure
formed upon irradiation of photo-enol in presence of maleimides
evidencing the synthesis of the octamer was confirmed by
resonances detected at 6.00-5.84 (18/36), 3.20-3.06
(19/20/37/38) as well as 2.96-2.88 ppm (21/39) (refer to the NMR
of the photo-dimer 8c in Supporting Information). In addition, the
furan caged maleimide functionality at the chain-ends was verified
by proton resonances at 6.39 (1), 5.17 (2) and 2.77 ppm (3).
Conflict of Interest: The authors declare no conflict of interest.
Keywords: sequence-defined macromolecules
control photochemistry multi-component reactions
convergent
• sequence
•
•
•
[1]
a) J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater.
2016, 16024; b) J.-F. Lutz, Nat. Chem. 2010, 2, 84-85; c) J.-F. Lutz, M.
Ouchi, D. R. Liu, M. Sawamoto, Science 2013, 341, 1238149; d) Y. Hibi,
M. Ouchi, M. Sawamoto, Nat. Commun. 2016, 7, 11064; e) B. V. K. J.
Schmidt, C. Barner-Kowollik, Nat. Chem. 2013, 5, 990-992; f) S. C.
Solleder, D. Zengel, K. S. Wetzel, M. A. R. Meier, Angew. Chem. Int. Ed.
2016, 55, 1204-1207; g) M. Porel, D. N. Thornlow, N. N. Phan, C. A. Alabi,
Nat. Chem. 2016, 8, 590-596; h) A. Burel, C. Carapito, J.-F. Lutz, L.
Charles, Macromolecules 2017, 50, 8290-8296; i) D. Karamessini, B. E.
Petit, M. Bouquey, L. Charles, J.-F. Lutz, Adv. Funct. Mater. 2017, 27,
1604595; j) S. Martens, J. O. Holloway, F. E. Du Prez, Macromol. Rapid
Commun. 2017, 38, DOI: 10.1002/marc.201700469; k) S. C. Solleder, R.
V. Schneider, K. S. Wetzel, A. C. Boukis, M. A. R. Meier, Macromol.
Rapid Commun. 2017, 38, 1600711.
[2]
a) N. Zydziak, W. Konrad, F. Feist, S. Afonin, S. Weidner, C. Barner-
Kowollik, Nat. Commun. 2016, 7, 13672; b) S. C. Solleder, S. Martens,
P. Espeel, F. Du Prez, M. A. R. Meier, Chem. Eur. J. 2017, 23, 13906-
13909; c) S. Martens, J. Van den Begin, A. Madder, F. E. Du Prez, P.
Espeel, J. Am. Chem. Soc. 2016, 138, 14182-14185; d) N. Zydziak, F.
Feist, B. Huber, J. O. Mueller, C. Barner-Kowollik, Chem. Commun. 2015,
51, 1799-1802; e) Z. Huang, J. Zhao, Z. Wang, F. Meng, K. Ding, X. Pan,
N. Zhou, X. Li, Z. Zhang, X. Zhu, Angew. Chem. Int. Ed. 2017, 56, 13612-
13617; f) C. Fu, Z. Huang, C. J. Hawker, G. Moad, J. Xu, C. Boyer, Polym.
Chem. 2017, 8, 4637-4643; g) J. W. Grate, K.-F. Mo, M. D. Daily, Angew.
Chem. Int. Ed. 2016, 55, 3925-3930.
For the first time, a combination of multi-component reactions
and photo-conjugation methods was applied for the synthesis of
precision alternating oligomers consisting of P-3CR and photo-
blocks with molecular weights up to 3532.16 g mol-1. Symmetric
sequence-defined oligomers have been prepared from sebacic
acid extended via P-3CR with a Passerini linker at both chain
ends leading to
a tetra-substituted macromolecule. Upon
[3]
[4]
[5]
R. B. Merrifield, J. Am. Chem. Soc. 1963, 85, 2149-2154.
irradiation, consecutive chain extensions with a set of photo-
building blocks led to the desired symmetric sequence-defined
oligomers in a modular approach. Synthesis of symmetric
macromolecules in a modular approach enables a higher
increase in molecular weight and higher overall yields per chain
extension step. Due to the monodisperse character, the
macromolecules feature absolute chain-end fidelity and side
chain positioning. Successful formation of the sequence-defined
oligomers 9a-c was confirmed by in depth characterization
including SEC, ESI-MS and NMR. Thus, the evolution of retention
time and the monodisperse nature of the molecular weight
distributions of the different synthetic steps obtained evidence the
successful ligation, confirming the versatility of P-3CRs and
photoreactions as well as switching from Passerini-blocks to
photo-enol ligation. The current convergent approach combining
P-3CRs and photo-conjugation using photo-enols demonstrates
its efficiency for the synthesis of sequence-defined polymers,
extending the toolbox for mimicking complex features of naturally
occurring macromolecules.
R. B. Merrifield, Angew. Chem. Int. Ed. 1985, 24, 799-810.
a) R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101,
3219-3232; b) E. Uhlmann, A. Peyman, G. Breipohl, D. W. Will, Angew.
Chem. Int. Ed. 1998, 37, 2796-2823.
[6]
[7]
[8]
H. Herzner, T. Reipen, M. Schultz, H. Kunz, Chem. Rev. 2000, 100,
4495-4538.
a) S. L. Beaucage, R. P. Iyer, Tetrahedron 1992, 48, 2223-2311; b) R.
Eritja, Int. J. Pept. Res. Ther. 2007, 13, 53-68.
R. J. Simon, R. S. Kania, R. N. Zuckermann, V. D. Huebner, D. A. Jewell,
S. Banville, S. Ng, L. Wang, S. Rosenberg, C. K. Marlowe, PNAS 1992,
89, 9367-9371.
[9]
J. K. Young, J. C. Nelson, J. S. Moore, J. Am. Chem. Soc. 1994, 116,
10841-10842.
[10] a) M. Fischer, F. Vögtle, Angew. Chem. Int. Ed. 1999, 38, 884-905; b) J.
Frechet, Science 1994, 263, 1710-1715; c) C. C. Lee, J. A. MacKay, J.
M. J. Fréchet, F. C. Szoka, Nat. Biotechnol. 2005, 23, 1517.
[11] a) J. C. Barnes, D. J. C. Ehrlich, A. X. Gao, F. A. Leibfarth, Y. Jiang, E.
Zhou, T. F. Jamison, J. A. Johnson, Nat. Chem. 2015, 7, 810-815; b) Y.
Jiang, M. R. Golder, H. V. T. Nguyen, Y. Wang, M. Zhong, J. C. Barnes,
D. J. C. Ehrlich, J. A. Johnson, J. Am. Chem. Soc. 2016, 138, 9369-9372.
[12] a) J. Vandenbergh, G. Reekmans, P. Adriaensens, T. Junkers, Chem.
Sci. 2015, 6, 5753-5761; b) J. Vandenbergh, G. Reekmans, P.
Adriaensens, T. Junkers, Chem. Commun. 2013, 49, 10358-10360; c) J.
Xu, C. Fu, S. Shanmugam, C. J. Hawker, G. Moad, C. Boyer, Angew.
Chem. Int. Ed. 2017, 56, 8376-8383.
[13] F. A. Leibfarth, J. A. Johnson, T. F. Jamison, PNAS 2015, 112, 10617-
10622.
[14] a) P. Espeel, L. L. G. Carrette, K. Bury, S. Capenberghs, J. C. Martins,
F. E. Du Prez, A. Madder, Angew. Chem. Int. Ed. 2013, 52, 13261-
13264; b) N. F. König, A. Al Ouahabi, S. Poyer, L. Charles, J.-F. Lutz,
Angew. Chem. Int. Ed. 2017, 56, 7297-7301; c) C.-L. Chen, R. N.
Zuckermann, J. J. DeYoreo, ACS Nano 2016, 10, 5314-5320.
[15] IUPAC, Compendium of Chemical Terminology, 2nd (the "Gold Book")
ed., Blackwell Scientific Publications, Oxford 1997.
[16] a) D. Estupiñán, T. Gegenhuber, J. P. Blinco, C. Barner-Kowollik, L.
Barner, ACS Macro Lett. 2017, 6, 229-234; b) P. Mueller, M. M. Zieger,
B. Richter, A. S. Quick, J. Fischer, J. B. Mueller, L. Zhou, G. U. Nienhaus,
M. Bastmeyer, C. Barner-Kowollik, M. Wegener, ACS Nano 2017, 11,
6396-6403.
Acknowledgements
C.B.-K. and M.M are grateful to the German Research Council
(DFG) for funding the current study in the context of the SFB 1176
(project A3). C.B.-K. additionally acknowledges the Australian
Research Council (ARC) for a Laureate Fellowship enabling his
photochemical research program as well as key support from the
Queensland University of Technology (QUT). A.B. is grateful for
a Chemie Fonds fellowship from the VCI.
This article is protected by copyright. All rights reserved.