Structure
AGE Recognition by RAGE
Cornilescu, G., Delaglio, F., and Bax, A. (1999). Protein backbone angle
glycation end products: new insight into AGE-RAGE interaction.
restraints from searching
a
database for chemical shift and sequence
Biochemistry 47, 12299–12311.
homology. J. Biomol. NMR 13, 289–302.
Neeper, M., Schmidt, A.M., Brett, J., Yan, S.D., Wang, F., Pan, Y.C., Elliston,
K., Stern, D., and Shaw, A. (1992). Cloning and expression of a cell surface
receptor for advanced glycosylation end products of proteins. J. Biol. Chem.
267, 14998–15004.
Dattilo, B.M., Fritz, G., Leclerc, E., Kooi, C.W., Heizmann, C.W., and Chazin,
W.J. (2007). The extracellular region of the receptor for advanced glycation
end products is composed of two independent structural units.
Biochemistry 46, 6957–6970.
Nogi, T., Sangawa, T., Tabata, S., Nagae, M., Tamura-Kawakami, K., Beppu,
A., Hattori, M., Yasui, N., and Takagi, J. (2008). Novel affinity tag system using
structurally defined antibody-tag interaction: application to single-step protein
purification. Protein Sci. 17, 2120–2126.
Eftink, M.R. (1997). Fluorescence methods for studying equilibrium macromol-
ecule-ligand interactions. Methods Enzymol. 278, 221–257.
Ferrage, F., Zoonens, M., Warschawski, D.E., Popot, J.L., and Bodenhausen,
G. (2003). Slow diffusion of macromolecular assemblies by a new pulsed field
gradient NMR method. J. Am. Chem. Soc. 125, 2541–2545.
Ostendorp, T., Leclerc, E., Galichet, A., Koch, M., Demling, N., Weigle, B.,
Heizmann, C.W., Kroneck, P.M., and Fritz, G. (2007). Structural and func-
tional insights into RAGE activation by multimeric S100B. EMBO J. 26,
3868–3878.
Fogh, R., Ionides, J., Ulrich, E., Boucher, W., Vranken, W., Linge, J.P., Habeck,
M., Rieping, W., Bhat, T.N., Westbrook, J., et al. (2002). The CCPN project: an
interim report on a data model for the NMR community. Nat. Struct. Biol. 9,
416–418.
Perkins, S.J., and Wuthrich, K. (1979). Ring current effects in the conformation-
dependent NMR chemical shifts of aliphatic protons in the basic pancreatic
trypsin inhibitor. Biochim. Biophys. Acta 576, 409–423.
Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-
PdbViewer: an environment for comparative protein modeling.
Electrophoresis 18, 2714–2723.
Povey, J.F., Howard, M.J., Williamson, R.A., and Smales, C.M. (2008). The
effect of peptide glycation on local secondary structure. J. Struct. Biol. 161,
151–161.
Guntert, P. (2004). Automated NMR structure calculation with CYANA.
Methods Mol. Biol. 278, 353–378.
Ramasamy, R., Vannucci, S.J., Yan, S.S., Herold, K., Yan, S.F., and Schmidt,
A.M. (2005a). Advanced glycation end products and RAGE: a common thread
in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15,
16R–28R.
Habeeb, A.F. (1966). Determination of free amino groups in proteins by trinitro-
benzenesulfonic acid. Anal. Biochem. 14, 328–336.
Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C.,
Kambham, N., Bierhaus, A., Nawroth, P., et al. (1999). RAGE mediates a novel
proinflammatory axis: a central cell surface receptor for S100/calgranulin poly-
peptides. Cell 97, 889–901.
Ramasamy, R., Yan, S.F., and Schmidt, A.M. (2005b). The RAGE axis and
endothelial dysfunction: maladaptive roles in the diabetic vasculature and
beyond. Trends Cardiovasc. Med. 15, 237–243.
Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M.,
Lundh, E.R., Vijay, S., Nitecki, D., et al. (1995). The receptor for advanced gly-
cation end products (RAGE) is a cellular binding site for amphoterin. Mediation
of neurite outgrowth and co-expression of rage and amphoterin in the devel-
oping nervous system. J. Biol. Chem. 270, 25752–25761.
Schimmel, P.R., and Cantor, C.R. (1980). Biophysical Chemistry: PartII; tech-
niques for the Study of Biologycal Structure and Function (New York: W.H.
Freeman).
Schmidt, A.M., and Stern, D.M. (2001). Receptor for age (RAGE) is a gene
within the major histocompatibility class III region: implications for host
response mechanisms in homeostasis and chronic disease. Front. Biosci. 6,
D1151–D1160.
Ishiguro, H., Nakaigawa, N., Miyoshi, Y., Fujinami, K., Kubota, Y., and Uemura,
H. (2005). Receptor for advanced glycation end products (RAGE) and its
ligand, amphoterin are overexpressed and associated with prostate cancer
development. Prostate 64, 92–100.
Schmidt, A.M., Hori, O., Chen, J.X., Li, J.F., Crandall, J., Zhang, J., Cao, R.,
Yan, S.D., Brett, J., and Stern, D. (1995). Advanced glycation endproducts in-
teracting with their endothelial receptor induce expression of vascular cell
adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in
mice. A potential mechanism for the accelerated vasculopathy of diabetes.
J. Clin. Invest. 96, 1395–1403.
Iwahara, J., Wojciak, J.M., and Clubb, R.T. (2001). Improved NMR spectra of
a protein-DNA complex through rational mutagenesis and the application of
a sensitivity optimized isotope-filtered NOESY experiment. J. Biomol. NMR
19, 231–241.
Kislinger, T., Fu, C., Huber, B., Qu, W., Taguchi, A., Du Yan, S., Hofmann, M.,
Yan, S.F., Pischetsrieder, M., Stern, D., and Schmidt, A.M. (1999). N(epsilon)-
(carboxymethyl)lysine adducts of proteins are ligands for receptor for
advanced glycation end products that activate cell signaling pathways and
modulate gene expression. J. Biol. Chem. 274, 31740–31749.
Schmidt, A.M., Hori, O., Cao, R., Yan, S.D., Brett, J., Wautier, J.L., Ogawa, S.,
Kuwabara, K., Matsumoto, M., and Stern, D. (1996). RAGE: a novel cellular
receptor for advanced glycation end products. Diabetes 45 (Suppl 3),
S77–S80.
Schmidt, A.M., Hofmann, M., Taguchi, A., Yan, S.D., and Stern, D.M.
(2000). RAGE: a multiligand receptor contributing to the cellular response
in diabetic vasculopathy and inflammation. Semin. Thromb. Hemost. 26,
485–493.
Koch, M., Chitayat, S., Datillo, B.M., Schiefner, A., Diez, J., Chazin, W., and
Fritz, G. (2010). Structural Basis for Ligand recognition and activation of
RAGE. Structure 18, 1342–1352.
Koradi, R., Billeter, M., and Wuthrich, K. (1996). MOLMOL: a program for
Schuttelkopf, A.W., and van Aalten, D.M. (2004). PRODRG: a tool for high-
throughput crystallography of protein-ligand complexes. Acta Crystallogr. D
Biol. Crystallogr. 60, 1355–1363.
display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55.
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R., and
Thornton, J.M. (1996). AQUA and PROCHECK-NMR: programs for checking
the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.
Sugaya, K., Fukagawa, T., Matsumoto, K., Mita, K., Takahashi, E., Ando, A.,
Inoko, H., and Ikemura, T. (1994). Three genes in the human MHC class III
region near the junction with the class II: gene for receptor of advanced
glycosylation end products, PBX2 homeobox gene and a notch homolog,
human counterpart of mouse mammary tumor gene int-3. Genomics 23,
408–419.
Leclerc, E., Fritz, G., Weibel, M., Heizmann, C.W., and Galichet, A. (2007).
S100B and S100A6 differentially modulate cell survival by interacting with
distinct RAGE (receptor for advanced glycation end products) immunoglobulin
domains. J. Biol. Chem. 282, 31317–31331.
Taguchi, A., Blood, D.C., del Toro, G., Canet, A., Lee, D.C., Qu, W., Tanji, N.,
Lu, Y., Lalla, E., Fu, C., et al. (2000). Blockade of RAGE-amphoterin signalling
suppresses tumour growth and metastases. Nature 405, 354–360.
Masse, J.E., and Keller, R. (2005). AutoLink: automated sequential resonance
assignment of biopolymers from NMR data by relative-hypothesis-prioritiza-
tion-based simulated logic. J. Magn. Reson. 174, 133–151.
Matsumoto, S., Yoshida, T., Murata, H., Harada, S., Fujita, N., Nakamura, S.,
Yamamoto, Y., Watanabe, T., Yonekura, H., Yamamoto, H., et al. (2008).
Solution structure of the variable-type domain of the receptor for advanced
Thornalley, P.J. (1998). Cell activation by glycated proteins. AGE receptors,
receptor recognition factors and functional classification of AGEs. Cell. Mol.
Biol. (Noisy-le-grand) 44, 1013–1023.
Structure 19, 722–732, May 11, 2011 ª2011 Elsevier Ltd All rights reserved 731