Heteracalixaromatics, the heteroatom-bridged calixaro-
matics, are a new generation of functional macrocyclic
host molecules in supramolecular chemistry.12 The diverse
macrocycles from the combination of heteroatoms and
(hetero)aromatic rings, combined with tunable conforma-
tions and cavities of varied electronic features owing to the
nature of the bridging heteroatoms and their ability to
form different conjugation systems with adjacent (hetero)-
aromatic components, render heteracalixaromatics highly
versatile in the recognition of various electron-neutral and
charged guest species and in the construction of supra-
molecular assemblies. We8 have reported recently that
azacalix[1]arene[3]pyridine 1a undergoes highly efficient
alcohols,13 enabling therefore the efficient functionalization
of arene CꢀH bonds. To shed light on the reactivity of
highly valent organocopper compounds and to explore
applications of aryl-Cu(III) complexes in the synthesis of
tailor-made functional heteracalixaromatics, we undertook
the current CꢀC cross-coupling reaction study. We report
herein the unprecedented CarylꢀCalkynyl bond formation
from the cross-coupling of arenes with alkynyllithium re-
agents via the structurally well-defined aryl-Cu(III) inter-
mediates. We also demonstrate for the first time that the
CastroꢀStephens reaction, the Cu(I)-mediated coupling
between aryl halides and terminal alkynes, proceeds via an
arylcopper(III) intermediate, suggesting an alternative re-
action pathway in addition to a believed copper(I)-involved
four-center transition state.
aryl CꢀH bond activation with Cu(ClO4)2 6H2O under
3
mild aerobic conditions to form a stable aryl-Cu(III) com-
pound 2a quantitatively (Scheme 1). At ambient tempera-
ture, aryl-Cu(III) 2a reacts very rapidly with diverse nucleo-
philic reagents including halides,8 various carboxylates,8
cyanide,8 thiocyanate,8 and both aliphatic and aromatic
Scheme 1. Cu(ClO4)2-Mediated Aryl CꢀH Activation
(3) (a) Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842.
(b) Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932.
(c) Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411. (d)
Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178. (e) Bernini, R.;
Fabrizi, G.; Sferrazza, A.; Cacchi, S. Angew. Chem., Int. Ed. 2009, 48,
8078. (f) Yang, L.; Lu, Z.; Stahl, S. S. Chem. Commun. 2009, 6460. (g)
Chu, L.; Yue, X.; Qing, F.-L. Org. Lett. 2010, 12, 1644. (h) Wang, W.;
Luo, F.; Zhang, S.; Cheng, J. J. Org. Chem. 2010, 75, 2415. (i) Do, H.-Q.;
Daugulis, O. Org. Lett. 2010, 11, 2517. (j) Tang, B.-X.; Song, R.-J.; Wu,
C.-Y.; Liu, Y.; Zhou, M.-B.; Wei, W.-T.; Deng, G.-B.; Yin, D.-L.; Li, J.-
H. J. Am. Chem. Soc. 2010, 132, 8900. (k) Klein, J. E. M. N.; Perry, A.;
Pugh, D. S.; Taylor, R. J. K. Org. Lett. 2010, 12, 3446. (l) Kawano, T.;
Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900. (m)
John, A.; Nicholas, K. M. J. Org. Chem. 2011, 76, 4158. (o) Xu, R.; Wan,
J.-P.; Mao, H.; Pan, Y. J. Am. Chem. Soc. 2010, 132, 15531. (p) Zhang,
L.; Cheng, J.; Ohishi, T.; Hou, Z. Angew. Chem., Int. Ed. 2010, 49, 8670.
(q) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 8172. (r) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129,
12404. (s) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1126. (t)
Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
15185. (u) Do, H.-Q.; Daugulis, O. Chem. Commun. 2009, 6433. (v)
Kitahara, M.; Umeda, N.; Hirano, K.; Satoh, T.; Mitura, M. J. Am.
Chem. Soc. 2011, 133, 2160. (w) Yao, T.; Hirano, K.; Satoh, T.; Miura,
M. Angew. Chem., Int. Ed. 2011, 50, 2990.
We initiated our study with examination of the reaction
between pure aryl-Cu(III) species 2a and (phenylethynyl)-
lithium 3a (Table 1). At ambient temperature, the reaction
proceeded smoothly in THF to afford the desired cross-
coupling product 4a in 28% yield, along with the isolation
of azacalix[1]arene[3]pyridine 1a in 47% yield and a trace
amount of 1,4-diphenylbuta-1,3-diyne 5a, which formed
most likely from the homocoupling of alkyne (entry 1,
Table 1). The yield of 4a was then improved to 54% when
2 equiv of 3a were used (entry 2, Table 1). A further increase
of the ratio of 3a over 1a only gave rise to a marginal
increase of the chemical yield of 4a (entries 5 and 6, Table 1).
Short reaction times led to a decrease in the formation of 4a
(entry 3, Table 1), while a longer reaction period did not
affect the yield (entry 4, Table 1). The reaction was not very
sensitive to low temperatures (entries 7 and 8, Table 1),
whereas an elevated temperature had a detrimental effect on
the reaction (entry 9, Table 1). It is interesting to note that
oxygen did not interfere with the cross-coupling as the
reaction exposed to oxygen (1 atm) proceeded equally well
to produce 4a in a comparable yield, albeit the oxidative
atmosphere facilitated the formation of homocoupling
product 5a from 3a (entry 10, Table 1). The use of other
solvents such as 1,4-dioxane, diethyl ether, 1,2-dimetho-
xyethane, and toluene resulted in lower yields (see Support-
ing Information (SI)).
(4) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
(5) Chen, B.; Hou, X.-L.; Li, Y.-X.; Wu, Y.-D. J. Am. Chem. Soc.
2011, 133, 7668.
(6) (a) Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH,
GmbH: Weinheim, 2002. (b) Monnier, F.; Taillefer, M. Angew. Chem., Int.
Ed. 2009, 48, 6954. (c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S.
Angew. Chem., Int. Ed. 2011, 50, 11062.
(7) (a) Ribas, X.; Jackson, D. A.; Donnadieu, B.; Mahıa, J.; Parella,
´
T.; Xifra, R.; Hedman, B.; Hodgson, K. O.; Llobet, A.; Stack, T. D. P.
Angew. Chem., Int. Ed. 2002, 41, 2991. Preparation of A under aerobic
conditions was reported in 2010. (b) King, A. E.; Huffman, L. M.;
Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010,
ꢀ
132, 12068. (c) Ribas, X.; Calle, C.; Poater, A.; Casitas, A.; Gomez, L.;
Xifra, R.; Perella, T.; Benet-Buchholz, J.; Schweiger, A.; Mitrikas, G.;
ꢁ
Sola, M.; Llobet, A.; Stack, T. D. J. Am. Chem. Soc. 2010, 132, 12299.
(8) Yao, B.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. Chem. Com-
mun 2009, 2899.
(9) (a) Kinoshita, I.; Wright, L. J.; Kubo, S.; Kimura, K.; Sakata, A.;
Yano, T.; Miyamoto, R.; Nishioka, T.; Isobe, K. Dalton Trans. 2003,
ꢀ
1993. (b) Pawlicki, M.; Kanska, I.; Latos-Grazynski, L. Inorg. Chem.
_ ꢀ
2007, 46, 6575.
(10) Huffman, L. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 9196.
(11) (a) Casitas, A.; King, A. E.; Parella, T.; Costas, M.; Stahl, S. S.;
Under the optimized conditions, the generality of the
cross-coupling reaction of the aryl-Cu(III) species with
alkynyllithiums was investigated. We were pleased to find
that all alkynyllithiums 3bꢀi tested underwent reaction
with aryl-Cu(III) compounds 2aꢀc to give products 4bꢀm
in 34ꢀ87% yields (Table 2). As assembled in Table 2, for
ꢁ
Ribas, X. Chem. Sic. 2010, 1, 326. (b) Casitas, A.; Poater, A.; Sola, M.;
Stahl, S. S.; Costas, M.; Ribas, X. Dalton Trans. 2010, 39, 10458.
(12) For recent reviews: (a) Wang, M.-X. Acc. Chem. Res. 2012, 45, 182.
(b) Wang, M.-X. Chem. Commun. 2008, 4541. (c) Maes, W.; Dehaen, W.
Chem. Soc. Rev. 2008, 37, 2393. (d) Tuse, H.; Ishibashi, K.; Tamura, R. Top.
Heterocycl. Chem. 2008, 17, 73.
(13) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2011, 13, 6560.
Org. Lett., Vol. 14, No. 6, 2012
1473