1680
S. Ramurthy et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1678–1681
Figure 2. Binding site model for compound 14 (in purple), derived by docking into the crystal structure of B-Raf (PDB accession code 1UWH). The left picture shows a cartoon
representation of the kinase with selected residues in stick model (Glu501, Cys532, Phe593 and Asp594) and the co-crystallized Sorafenib in green. The right picture zooms in
and displays the extra radius binding surface around 14, colored by surface properties: red = hydrogen-bond donor, blue = hydrogen-bond acceptor, green = hydrophobic
surface, white = aromatic surface. Ortho positions in optimal van-der-Waals contact with the protein are indicated with arrows.
structure published for B-Raf (PDB accession code 1UWH).24 Figure
Supplementary data
2 (left) shows the overlap of the docking model with the co-crystal-
lized conformation of Sorafenib. The model suggests a very similar
binding mode when comparing 14 with Sorafenib.25 Specific inter-
actions between 14 and the B-Raf protein include hydrogen bonds
to (1) the backbone NH and C@O of Cys532 in the hinge region
through the pyridyl-amide moiety, (2) the backbone NH of
Asp594 through the quinazoline nitrogen, and (3) the side chain
COO– of Glu501 through the aniline NH. This model uses the
‘DFG-out’ conformation of the protein where the substituted ani-
line displaces Phe593, causing it to swing out and interact with
the aromatic systems in the hinge region and the selectivity pock-
et. The extra radius surface model in Figure 2 (right) shows that the
ortho carbons of the aniline are in optimal van-der-Waals contact
with the binding pocket, providing a rationale for the drop in affin-
ity with substitution in that position. The model indicates there is
space available for meta- and para-substitution, in accordance with
the observed SAR.
Supplementary data associated with this article can be found, in
References and notes
1. Dumaz, N.; Marais, R. J. Biol. Chem. 2003, 278, 29819.
2. Weber, C. K.; Slupsky, J. R.; Herrmann, C.; Schuler, M.; Rapp, U. R.; Block, C.
Oncogene 2000, 19, 169.
3. Pritchard, C. A.; Samuels, M. L.; Bosch, E.; McMahon, M. Mol. Cell. Biol. 1995, 15,
6430.
4. Minamoto, T.; Mai, M.; Ronai, Z. e. Cancer Detect. Prev. 2000, 24, 1.
5. Yuen, S. T.; Davies, H.; Chan, T. L.; Ho, J. W.; Bignell, G. R.; Cox, C.; Stephens, P.;
Edkins, S.; Tsui, W. W.; Chan, A. S.; Futreal, P. A.; Stratton, M. R.; Wooster, R.;
Leung, S. Y. Cancer Res. 2002, 62, 6451.
6. Pollock, P. M.; Harper, U. L.; Hansen, K. S.; Yudt, L. M.; Stark, M.; Robbins, C. M.;
Moses, T. Y.; Hostetter, G.; Wagner, U.; Kakareka, J.; Salem, G.; Pohida, T.;
Heenan, P.; Duray, P.; Kallioniemi, O.; Hayward, N. K.; Trent, J. M.; Meltzer, P. S.
Nat. Genet. 2003, 33, 19.
7. Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.;
Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.;
Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.;
Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.;
Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.;
Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.;
Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W. C.; Leung, S. Y.; Yuen, S. T.;
Weber, B. L.; Seigler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.;
Wooster, R.; Stratton, M. R.; Futreal, P. A. Nature 2002, 417, 949.
8. Kimura, E. T.; Nikiforova, M. N.; Zhu, Z.; Knauf, J. A.; Nikiforov, Y. E.; Fagin, J. A.
Cancer Res. 2003, 63, 1454.
9. Brose, M. S.; Volpe, P.; Feldman, M.; Kumar, M.; Rishi, I.; Gerrero, R.; Einhorn, E.;
Herlyn, M.; Minna, J.; Nicholson, A.; Roth, J. A.; Albelda, S. M.; Davies, H.; Cox,
C.; Brignell, G.; Stephens, P.; Futreal, P. A.; Wooster, R.; Stratton, M. R.; Weber,
B. L. Cancer Res. 2002, 62, 6997.
10. Smith, R. A.; Barbosa, J.; Blum, C. L.; Bobko, M. A.; Caringal, Y. V.; Dally, R.;
Johnson, J. S.; Katz, M. E.; Kennure, N.; Kingery-Wood, J.; Lee, W.; Lowinger, T.
B.; Lyons, J.; Marsh, V.; Rogers, D. H.; Swartz, S.; Walling, T.; Wild, H. Bioorg.
Med. Chem. Lett. 2001, 11, 2775.
While all three series yielded potent BrafV600E inhibitors in the
biochemical assay, none of these inhibited phosphorylation of
ERK in cells (SKMEL-28, RafV600E EC50 >10
lM). This observation
was consistent with the majority of the compounds from our origi-
nal benzimidazole series. This discrepancy between biochemical
and cellular potency could be due to permeability and solubility
limitations. Compounds from all series were tested in the Caco2
assay and shown to have poor permeability (Papp A–B <1 ꢀ 10ꢁ6
cm/s). Solubility at pH7 was measured and shown to be <1 lM.
In addition, it should be noted that in the biochemical assay, the
purified kinase domain of BrafV600E is not representative of the full
length protein in cells where BrafV600E exists as a complex with
chaperones, cytoskeleton, phosphatases and kinases.23
The kinase profiles of three representative compounds, 14–16
were determined for 50 kinases including RTKS, STKs, TKs and
AGC kinases. The compounds exhibited a fairly narrow kinase pro-
file, inhibiting four RTKs (CSFR1, Flt3, KDR and cABL) out of 50 ki-
11. Khire, U. R.; Bankston, D.; Barbosa, J.; Brittelli, D. R.; Caringal, Y.; Carlson, R.;
Dumas, J.; Gane, T.; Heald, S. L.; Hibner, B.; Johnson, J. S.; Katz, M. E.; Kennure,
N.; Kingery-Wood, J.; Lee, W.; Liu, X.-G.; Lowinger, T. B.; McAlexander, I.;
Monahan, M.-K.; Natero, R.; Renick, J.; Riedl, B.; Rong, H.; Sibley, R. N.; Smith, R.
A.; Wolanin, D. Bioorg. Med. Chem. Lett. 2004, 14, 783.
nases with an IC50 <1
l
M. The pharmacokinetic properties for one
12. Wood, J. E.; Wild, H.; Rogers, D. H.; Lyons, J.; Katz, M. E.; Caringal, Y. V.; Dally,
R.; Lee, W.; Smith, R. A.; Blum, C. L. PCT Int. Appl.: WO 9852559, 1998, p 53.
13. Dumas, J. Exp. Opin. Ther. Pat. 2001, 11, 405.
14. Kumar, C. C.; Madison, V. Exp. Opin. Emerg. Drugs 2001, 6, 303.
15. Wilhelm, S. M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.;
Zhang, X.; Vincent, P.; McHugh, M.; Cao, Y.; Shujath, J.; Gawlak, S.; Eveleigh, D.;
Rowley, ; Liu, L.; Adnane, L.; Lynch, M.; Auclair, D.; Taylor, I.; Gedrich, R.;
Voznesensky, A.; Riedl, B.; Post, L. E.; Bollag, G.; Trail, P. A. Cancer Res. 2001, 64,
7099.
16. Eisen, T.; Ahmad, T.; Flaherty, K. T.; Gore, M.; Kaye, S.; Marias, R.; Gibebns, I.;
Hackett, S.; James, M.; Schuster, L. M.; Nathanson, K. L.; Xia, C.; Simantov, R.;
Schwartz, B.; Poulin-Costello, M.; O’Dwyer, P. J.; Ratain, M. J. Br. J. Cancer 2006,
95, 581.
of the prototypes in the quinazoline series, 24, were determined.
Following a single 20-mg/kg oral administration to female mice
in 15% captisol, 24 exhibited a clearance of 53.1 mL/min/kg, a vol-
ume of distribution of 4717 mL/kg, a half-life of 468 min, and an
oral bioavailability of 35%.
In conclusion, we developed three series of biochemically potent
BrafV600E inhibitors. Lack of cellular potency of these compounds
discouraged us from continuing further work on these series.
17. Flaherty, K. T.; Puzanov, I.; Kim, K. B.; Ribas, A.; McArthu, G. A.; Sosman, J.;
O’Dwyer, P. J.; Lee, R. J.; Grippo, J. F.; Nolop, K.; Chapman, P. B. N. Eng. J. Med.
2010, 363, 809.
18. Kefford, R.; Arkenau, H.; Brown, M. P.; Millward, M.; Infante, J. R.; Long, G. V.;
Ouellet, D.; Curtis, M.; Lebowitz, P. F.; Falchook, G. S. Annual ASCO meeting,
Chicago, IL, 2010, abstract 8503.
Acknowledgments
The authors wish to acknowledge Payman Amiri for enzyme
and cell based assays and Keshi Wang for formulation and bioanal-
ysis of these compounds.