stereoselective synthesis of amines, as summarized in an
extensive recent review by Ellman;8 however, the present
reactions are the first use of sulfinamides in metal-catalyzed
nucleophilic functionalization of alkenes.9
Table 1. Optimization of a Catalyst System for Diastereoselec-
tive Oxidative Cyclizationa
Our strategy to prepare 2,5-disubstituted pyrrolidines is
illustrated in Scheme 1 and begins with readily available
cis-4-hexen-1-ols.10 Aerobic oxidation of the alcohol11
entry
1
[PdII]/additives
solvent
DMSO
yieldc
87
t
and condensation of the resulting aldehyde with Bu-
Pd(OAc)2/2 equiv of NaOAc,
sulfinamide8,12 furnish the sulfinyl imine derivative 1.
Methods for stereoselective addition of nucleophiles to
chiral sulfinyl imines provide access to a variety of enan-
tiopure R-substituted sulfinamides 2.8 PdII-catalyzed
aerobic oxidative cyclization of 2 affords the desired 2,5-
disubstituted pyrrolidines.
˚
no 3 A MS
2
3
Pd(OAc)2/20 mol % pyridine
Pd(TFA)2/40 mol % pyridine,
toluene
toluene
38
8
˚
2 equiv of Na2CO3, no 3 A MS
4
Pd(TFA)2/20 mol % DMSO,
1 equiv of LiOAc
THF
83
5
6
Pd(TFA)2/no base
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
DMSO
6
The enantiopure R-Me-substituted sulfinamide 3 was
used as the substrate in the development of a suitable
heterocyclization catalyst (Table 1).13 Testing of catalyst
systems that have been shown previously to promote aero-
bic oxidative cyclization of γ-aminoalkene derivatives led
Pd(TFA)2/1 equiv of NaOAc
Pd(TFA)2/1 equiv of NaOBz
Pd(TFA)2/1 equiv of LiOAc
Pd(TFA)2/1 equiv of Na2CO3
PdCl2/1 equiv of LiOAc
Pd(OPiv)2/1 equiv of LiOAc
81
79
92
14
81
13
7
8
9
10
11
a Conditions: substrate (0.08 mmol), PdII (0.008 mmol), 3 A MS
(40 mg), O2 (1 atm), solvent (0.8 mL), 50 °C, 14 h. b Diastereomeric ratio
determined by 1H NMR spectroscopy. c Yield determined by 1H NMR
spectroscopy, int. std. = PhSiMe3.
˚
Scheme 1. Stereoselective Synthesis of 2,5-Disubstituted Pyr-
rolidines
to mixed results (Table 1, entries 1À4).3,14 Good product
yields were obtained with PdII catalysts in which DMSO
was used as a solvent and/or ligand (entries 1 and 4),3a,14
while PdII/pyridine-based catalyst systems (entries 2
and 3)3b,c afforded low yields. Further screening of anionic
base additives, the PdII source, and solvents (Table 1, entries
5À11; Table S1) revealed that optimal results were obtained
with Pd(TFA)2 (TFA = trifluoroactate) as the PdII source,
1 equiv of LiOAc, and DMSO as the solvent. All conditions
tested led to formation of a single diastereomeric product
(>20:1 dr), affording the cis disubstituted pyrrolidine 4.
The sulfinamide group is readily removed upon treatment of
4 with 4 M HCl,15 affording the HCl salt of the unprotected
pyrrolidine in 95% yield.16
(5) For a review of stereoselective nucleopalladation reactions, in-
cluding oxidative cyclizations, see: McDonald, R. I.; Liu, G.; Stahl, S. S.
Chem. Rev. 2011, 111, 2981–3019.
(6) For leading references to other enantioselective metal-catalyzed
aminocyclization reactions, see: (a) Hong, S.; Tian, S.; Metz, M. V.;
Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768–14783. (b) Wood,
M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew.
Chem., Int. Ed. 2007, 46, 354–358. (c) Chemler, S. R. Org. Biomol. Chem.
2009, 7, 3009–3019. (d) Fuller, P. H.; Kim, J.-W.; Chemler, S. R. J. Am.
Chem. Soc. 2008, 130, 17638–17639. (e) Shen, X.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2010, 49, 564–567. (f) Mai, D. N.; Wolfe, J. P.
J. Am. Chem. Soc. 2010, 132, 12157–12159.
(8) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010,
110, 3600–3740.
(9) For alternative heterocyclization methods using tBu-sulfinamides
in the stereoselective formation of CÀN bonds, see: (a) Brinner, K. M.;
Ellman, J. A. Org. Biomol. Chem. 2005, 3, 2109–2113. (b) Li, Y.; Ni, C.;
Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693–
1696. (c) Reddy, L. R.; Das, S. G.; Lui, Y.; Prashad, M. J. Org. Chem.
2010, 75, 2236–2246.
(7) For leading references on the synthesis of 2,5-disubstituted
pyrrolidines, see: (a) Pichon, M.; Figadere, B. Tetrahedron: Asymmetry
1996, 7, 927–964. (b) Rudolph, A. C.; Machauer, R.; Martin, S. F.
Tetrahedron Lett. 2004, 45, 4895–4898. (c) Hussaini, S. R.; Moloney,
(10) Wenkert, E.; Micheloti, E. L.; Swindell, C. S.; Tingoli, M. J. Org.
Chem. 1984, 49, 4894–4899.
(11) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901–
16910.
(12) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A.
J. Org. Chem. 1999, 64, 1278–1284.
(13) Additional reaction optimization data are provided in the
Supporting Information.
(14) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. 2010, 49,
5529–5532.
ꢀ
M. G. Org. Biomol. Chem. 2006, 4, 2600–2615. (d) Llamas, T.; Arrayas,
R. G.; Carretero, J. C. Org. Lett. 2006, 8, 1795–1798. (e) Wang, P.-A.;
Xu, Z.-S.; Chen, C.-F.; Gao, X.-G.; Sun, X.-L.; Zhang, S.-Y. Chirality
2007, 19, 581–588. (f) Zhang, S.; Xu, L.; Miao, L.; Shu, H.; Trudell,
M. L. J. Org. Chem. 2007, 72, 3133–3136. (g) Paderes, M. C.; Chemler,
S. R. Org. Lett. 2009, 11, 1915–1918. (h) Lygo, B.; Beynon, C.; McLeod,
M. C.; Roy, C.-E.; Wade, C. E. Tetrahedron 2010, 66, 8832–8836. (i)
Lemen, G. S.; Wolfe, J. P. Org. Lett. 2010, 12, 2322–2325. (j) Lemen,
G. S.; Wolfe, J. P. Org. Lett. 2011, 13, 3218–3221.
(15) Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883–
8904.
Org. Lett., Vol. 14, No. 5, 2012
1243