Efficient Synthesis of Substituted Dithieno[2,3-b:3',2'-d]siloles
Letters in Organic Chemistry, 2011, Vol. 8, No. 10
731
indium reagents: synthesis and characterization of dithienosilole
derivatives and their application to organic light-emitting diodes.
Organometallics 2010, 29, 2715-2723. (b). Zhan X.; Haldi A.; Yu
J.; Kondo T.; Domercq B.; Cho J.-Y.; Barlow S.; Kippelen B.;
Marder S.R. Synthesis, electron mobility, and electroluminescence
of a polynorbornene-supported silole. Polymer 2009, 50, 397-403.
(c). Ohshita, J. Conjugated oligomers and polymers containing
dithienosilole units. Macromol. Chem. Phys. 2009, 210, 1360-1370.
(a) Beaujuge P.M.; Pisula W.; Tsao H.N.; Ellinger S.; Müllen K.;
Reynolds J.R. Tailoring structure-property relationships in
dithienosilole-benzothiadiazole donor-acceptor copolymers. J. Am.
Chem. Soc. 2009, 131, 7514-7515. (b) Lu G.; Usta H.; Risko C.;
Wang L.; Facchetti A.; Ratner M.A.; Marks T.J. Synthesis,
characterization, and transistor response of semiconducting silole
polymers with substantial hole mobility and air stability.
experiment and theory. J. Am. Chem. Soc., 2008, 130, 7670-7685.
(c) Usta H.; Lu G.; Facchetti A.; Marks T.J. Dithienosilole- and
dibenzosilole-thiophene copolymers as semiconductors for organic
thin-film transistors. J. Am. Chem. Soc. 2006, 128, 9034-9035.
(a) Lee S.K.; Lee J.; Lee H.Y.; Yoon S.C.; Kim J.R.; Kim K.N.;
Kim H.J.; Shin W.S.; Moon S.-J. Synthesis and characterization of
new dithienosilole-based copolymers for polymer solar cells. J.
Nanosci. Nanotechnol. 2011, 11, 4279-4284. (b) Caputo B.J.A.;
Welch G.C.; Kamkar D.A.; Henson Z.B.; Nguyen T.-Q.; Bazan
G.C. A dithienosilole-benzooxadiazole donor-acceptor copolymer
for utility in organic solar cells. Small 2011, 7, 1422-1426. (c) Huo
L.; Chen H.Y.; Hou J.; Chen T.L.; Yang Y. Low band gap
[C20H12Cl2S2Si] 413.9527 (Exact Mass), found 413.9531. IR
(KBr): 3068.5, 3017.4, 2993.9, 1657.6, 1582.9, 1496.5,
1421.8 (C-H) cm–1. For 3, the reaction was carried out on
759.8 mg scale of 9, 267.2 mg (46.9 %) of 3 was obtained.
1
Mp: 263-264 ꢀ. H NMR (400 MHz, CDCl3) ꢀ 6.72 (s,
1H), 0.40 (s, 1H); 13CNMR(100 MHz, CDCl3): ꢀ 144.81,
134.76, 132.73, 129.88, 0.82; HRMS (TOF MS EI+) m/z
calcd for [C20H16Cl4S4Si2] 579.8428 (Exact Mass), found
579.8433. IR (KBr): 3088.2, 2978.1, 2954.6, 2899.5 (C-H)
cm–1.
[2]
Crystal Data for 2 and 3
Crystal Data for 2:
M = 415.43, C20H12Cl2S2Si,
monoclinic, space group P2 (1), a = 6.6297 (12) Å, b =
12.109 (2) Å, c = 11.969 (2) Å, ꢀ = 90°, ꢁ = 100.072 (2)°, ꢂ
= 90°, V = 946.1(3) Å3, Z = 2, Dcalcd = 1.458 Mg/cm3. A
colorless crystal of dimensions 0.41 ꢁ 0.38 ꢁ 0.36 mm was
used for measurement at 296 (2) K with the ꢃ scan mode on
a Bruker Smart APEX diffractometer with CCD detector
using Mo–Ka radiation (ꢄ = 0.71073 Å). The data were
corrected for Lorentz and polarization effects and absorption
corrections were performed using SADABS [a] program.
The crystal structures were solved using the SHELXTL [b]
program and refined using full matrix least squares. The
positions of hydrogen atoms were calculated theoretically
and included in the final cycles of refinement in a riding
model along with attached carbons. The final cycle of
fullmatrix least-squares refinement was based on 3457
independent reflections [I >2s(I)] and 226 variable
parameters with R1 = 0.0321, wR2 = 0.0771. [a] Sheldrick,
G. M. SADABS; University of Göttingen: Germany, 1996.
[b] Sheldrick, G. M. SHELXTL Version 5.1; Bruker
Analytical X-ray Systems, Inc.: Madisonv / WI, 1997.
Crystal Data for 3: M = 582.58, C20H16Cl4S4Si2, monoclinic,
space group P1, a = 10.456 (2) Å, b = 18.845 (4) Å, c =
13.6551(3) Å, ꢀ = 90°, ꢁ = 106.440 (2)°, ꢂ = 90°, V =
2580.6(9) Å3, Z = 4, Dcalcd = 1.499 Mg/cm3. A colorless
crystal of dimensions 0.41 ꢁ 0.37 ꢁ 0.35 mm was used for
measurement at 296 (2) K. The structure was solved by the
same methods as used for 2. The final cycle of fullmatrix
least-squares refinement was based on 4781 observed
reflections [I >2s(I)] and 275 variable parameters with R1 =
0.0390, wR2 = 0.0809.
[3]
dithieno[3,2-b:2ꢂ,3ꢂ-d]silole-containing
polymers,
synthesis,
characterization and photovoltaic application. Chem. Commun.
2009, 5570-5572. (d) Hou J.; Chen H.-Y.; Zhang S.; Li G.; Yang
Y. Synthesis, characterization, and photovoltaic properties of a low
band gap polymer based on silole-containing polythiophenes and
2,1,3-benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 16144-
16145.
(a) Ko S.; Choi H.; Kang M.-S.; Hwang H.; Ji H.; Kim J.; Ko J.;
Kang Y. Silole-spaced triarylamine derivatives as highly efficient
organic sensitizers in dye-sensitized solar cell (DSSCs). J. Mater.
Chem., 2010, 20, 2391-2399. (b) Lin L.; Tsai C.; Wong K.; Huang
T.; Hsieh L.; Liu S.; Lin H.; Wu C.; Chou S.; Chen S.; Tsai A.
[4]
Organic
dyes
containing
coplanar
diphenyl-substituted
dithienosilole core for efficient dye-sensitized solar cells. J. Org.
Chem., 2010, 75, 4778-4785. (c) Zeng W.D.; Cao Y.M.; Bai Y.;
Wang Y.H.; Shi Y.S.; Zhang M.; Wang F.F.; Pan C.Y.; Wang P.
Efficient dye-sensitized solar cells with an organic photosensitizer
featuring orderly conjugated ethylenedioxythiophene and
dithienosilole blocks. Chem. Mater., 2010, 22, 1915-1925.
[5]
(a) Iyoda M.; Miura M.; Sasaki S.; Kabir S.M.H.; Kuwatani Y.;
Yoshida
M.
Synthesis
of
dithienothiophenes,
cyclopentadithiophene and silacyclopentadithiophenes using
palladium-catalyzed cyclization. Tetrahedron Lett., 1997, 38, 4581-
4582. (b) Kabir S. M. H.; Miura M.; Sasaki S.; Harada G.;
Kuwatani Y.; Yoshida M.; Iyoda M. New synthesis of tricyclic
thiophenes and cyclic tetrathiophenes using transition-metal-
catalyzed cyclization. Heterocycles, 2000, 52, 761-774.
[6]
[7]
Zhao C.; Xu L.; Shi J.; Li C.; Wang Z.; Wang H. The ring-opening
reaction
of
7,7'-dimethyl-2,5-bis(trimethylsilyl)-dithieno[2,3-
b:3',2'-d]silole in the presence of NXS (X = Cl, Br, I). Int. J. Org.
Chem., accepted.
Wang Y.; Wang Z.; Zhao D.; Wang Z.; Cheng Y.; Wang H.
Efficient synthesis of trimethylsilyl-substituted sithieno[2,3-b:3’,2’-
ACKNOWLEDGEMENTS
This work was supported by the NSFC (20972041,
50803015, 20672028), Program for Innovation Scientists and
Technicians Troop Construction Projects of Henan Province
(104100510011) and Program for SBGJ090506.
d]thiophene, tetra[2,3-thienylene] and
from substituted [3,3’]bithiophenyl. Synlett. 2007, 15, 2390-
2394.
hexa[2,3-thienylene]
[8]
[9]
Marsella M.J.; Yoon K.; Tham F.S. Synthesis and crystal structure
of a tubular sexithiophene. Org. Lett. 2001, 3, 2129-2131.
(a) Miyake Y., Wu M.; Rahman M.J.; Iyoda M. Novel electron-
transfer oxidation of Lipshutz cuprates with 1,4-benzoquinones: an
efficient homo-coupling reaction of aryl halides and its application
to the construction of macrocyclic systems. Chem. Commun., 2005,
411-413. (b) Miyake Y.; Wu M.; Rahman M. J.; Kuwatani Y.;
Iyoda M. Efficient construction of biaryls and macrocyclic
cyclophanes via electron-transfer oxidation of Lipshutz cuprates. J.
Org. Chem., 2006, 71, 6110-6117.
SUPPLEMENTARY MATERIAL
Supplementary material is available on the publishers
Web site along with the published article.
REFERENCES
[1]
(a) Jung H.; Hwang H.; Park K.-M.; Kim J.; Kim D.-H.; Kang Y.
Palladium-catalyzed cross-coupling reactions of dithienosilole with