Journal of the American Chemical Society
Communication
Stary, I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13169. (h) Fukawa,
́
to the synthesis of various heteroatom-bridged helically chiral
1,1′-bitriphenylenes.
N.; Osaka, T.; Noguchi, K.; Tanaka, K. Org. Lett. 2010, 12, 1324.
(i) Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.; Tsuchikama,
K.; Endo, K. Chem. Commun. 2012, 48, 1311.
(7) For examples of asymmetric helicene synthesis, see: (a) Grandbois,
A.; Collins, S. K. Chem.Eur. J. 2008, 14, 9323. (b) Miyasaka, M.;
Rajca, A.; Pink, M.; Rajca, S. J. Am. Chem. Soc. 2005, 127, 13806.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, compound characterization data, and
X-ray crystallographic information files. This material is avail-
́ ́
(c) Carreno, M. C.; Gonzalez-Lopez, M.; Urbano, A. Chem. Commun.
̃
2005, 611. (d) Rajca, A.; Miyasaka, M.; Pink, M.; Wang, H.; Rajca, S.
J. Am. Chem. Soc. 2004, 126, 15211. (e) Ogawa, Y.; Toyama, M.;
Karikomi, M.; Seki, K.; Haga, K.; Uyehara, T. Tetrahedron Lett. 2003,
AUTHOR INFORMATION
Corresponding Author
■
44, 2167. (f) Carreno, M. C.; García-Cerrada, S.; Urbano, A. Chem.
̃
Eur. J. 2003, 9, 4118.
(8) McIver, A.; Young, D. D.; Deiters, A. Chem. Commun. 2008,
Notes
4750.
̀
(9) Thirion, D.; Poriel, C.; Rault-Berthelot, J.; Barriere, F.; Jeannin,
The authors declare no competing financial interest.
O. Chem.Eur. J 2010, 16, 13646.
(10) Syntheses of heterofluorenes via transition-metal-catalyzed [2 + 2 + 2]
cycloadditions of heteroatom-bridged 1,6-diynes with monoynes have
been reported. For carbazoles, see: (a) Witulski, B.; Alayrac, C. Angew.
Chem., Int. Ed. 2002, 41, 3281. (b) Alayrac, C.; Schollmeyer, D.; Witulski,
B. Chem. Commun. 2009, 1464. For silafluorenes, see: (c) Matsuda, T.;
Kadowaki, S.; Goya, T.; Murakami, M. Org. Lett. 2007, 9, 133. For diben-
zofurans and azadibenzofurans, see: (d) Komine, Y.; Kamisawa, A.; Tanaka,
K. Org. Lett. 2009, 11, 2361.
ACKNOWLEDGMENTS
■
This work was partially supported by a Grant-in-Aid for
Scientific Research (20675002) from MEXT, Japan. We thank
the Nanotechnology Network Project of MEXT, Japan. We
also thank Dr. Takeshi Suda (TUAT) for his valuable
assistance, Takasago International Corporation for the gift of
Segphos and H8-BINAP derivatives, and Umicore for generous
support in supplying a rhodium complex.
(11) Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K.
Angew. Chem., Int. Ed. 2012, 51, 695.
(12) Nakano, Nozaki, and co-workers11 reported that the sums of the
five dihedral angles of oxa-, aza-, and thia[7]helicenes were 79−88°.
On the other hand, that of λ5-phospha[7]helicene was 95−100°.
(13) For discussion regarding this relationship, See ref 11 and
Groen, M. B.; Schadenberg, H.; Wynberg, H. J. Org. Chem. 1971, 36,
2797.
REFERENCES
■
(1) For a review, see: Watson, M. D.; Fechtenkotter, A.; Mullen, K.
Chem. Rev. 2001, 101, 1267.
̈
̈
(2) Kumar, S. Liq. Cryst. 2004, 31, 1037.
(3) For reviews, see: (a) Inganas, O.; Zhang, F.; Tvingstedt, K.;
Andersson, L. M.; Hellstrom, S.; Andersson, M. R. Adv. Mater. 2010,
22, E100. (b) Abbel, R.; Schenning, A. P. H. J.; Meijer, E. W. J. Polym.
Sci., Part A: Polym. Chem. 2009, 47, 4215. (c) Grimsdale, A. C.;
̈
̈
(14) In addition, the shorter distance between the centroids of the
two terminal benzene rings in 6 (0.31 Å) than in 3aa (0.96 Å) also
explains the larger overlap of the two terminal benzene rings in 6 than
in 3aa. See the Supporting Information for details.
Mullen, K. Macromol. Rapid Commun. 2007, 28, 1676.
̈
(4) For reviews, see: (a) Shen, Y.; Chen, C.-F. Chem. Rev. 2012,
(15) See the Supporting Information.
DOI: 10.1021/cr200087r. (b) Stara,
45b, 885. (c) Rajca, A.; Miyasaka, M. In Functional Organic Materials:
Syntheses, Strategies, and Applications; Muller, T. J. J., Bunz, U. H. F.,
Eds.; Wiley-VCH: Weinheim, Germany, 2007; p 543. (d) Urbano, A.
Angew. Chem., Int. Ed. 2003, 42, 3986. (e) Schmuck, C. Angew. Chem.,
Int. Ed. 2003, 42, 2448. (f) Nuckolls, C.; Shao, R. F.; Jang, W. G.;
Clark, N. A.; Walba, D. M.; Katz, T. J. Chem. Mater. 2002, 14, 773.
(g) Osuga, H.; Tanaka, K. J. Synth. Org. Chem. Jpn. 2002, 60, 593.
(h) Katz, T. J. Angew. Chem., Int. Ed. 2000, 39, 1921. (i) Grimme, S.;
́
́
I. G.; Stary, I. Sci. Synth. 2010,
(16) The fluorescence quantum yields for hexahelicene and
triphenylene are 0.041 and 0.066; helically chiral 1,1′-bitriphenylenes
3aa, 4, and 6 exhibit higher fluorescence quantum yields. See:
Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of
Photochemistry, 3rd ed.; Taylor & Francis: Boca Raton, FL, 2006.
(17) (a) Riehl, J. P.; Richardson, F. S. Chem. Rev. 1986, 86, 1.
(b) Grell, M.; Bradley, D. D. C. Adv. Mater. 1999, 11, 895. (c) Circular
Dichroism: Principles and Applications, 2nd ed.; Berova, N., Nakanishi,
K., Woody, R. W., Eds.; Wiley-VCH: New York, 2000.
̈
Harren, J.; Sobanski, A.; Vogtle, F. Eur. J. Org. Chem. 1998, 1491.
̈
(18) Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M.
Angew. Chem., Int. Ed. 2011, 50, 3684.
(5) Several 3,3′-biphenanthrene-based hetero[7]helicenes have been
reported. For oxa- and aza[7]helicenes, see: (a) Nakano, K.; Hidehira,
Y.; Takahashi, K.; Hiyama, T.; Nozaki, K. Angew. Chem., Int. Ed. 2005,
44, 7136. (b) Dreher, S. D.; Weix, D. J.; Katz, T. J. J. Org. Chem. 1999,
64, 3671. For thia[7]helicenes, see: (c) Dore, A.; Fabbri, D.; Gladiali,
S.; Valle, G. Tetrahedron: Asymmetry 1995, 6, 779. (d) Gottarelli, G.;
Proni, G.; Spada, G. P.; Fabbri, D.; Gladiali, S.; Rosini, C. J. Org. Chem.
1996, 61, 2013. Also see ref 5b. For oxa[9]helicenes, see: (e) Salim, M.;
Ubukata, H.; Kimura, T.; Karikomi, M. Tetrahedron Lett. 2011, 52, 6591.
(6) For examples of asymmetric helicene synthesis via transition-
(19) For CPL of small molecular systems, see: (a) Maeda, H.; Bando,
Y.; Shimomura, K.; Yamada, I.; Naito, M.; Nobusawa, K.; Tsumatori, H.;
Kawai, T. J. Am. Chem. Soc. 2011, 133, 9266. (b) Tsumatori, H.;
Nakashima, T.; Kawai, T. Org. Lett. 2010, 12, 2362. (c) Field, J. E.;
Muller, G.; Riehl, J. P.; Venkataraman, D. J. Am. Chem. Soc. 2003, 125,
11808. (d) Phillips, K. E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.;
Turro, N. J. J. Am. Chem. Soc. 2001, 123, 11899.
(20) For CPL of polymer systems, see: (a) Satrijo, A.; Meskers, S. C. J.;
Swager, T. M. J. Am. Chem. Soc. 2006, 128, 9030. (b) Goto, H.; Akagi,
K. Angew. Chem., Int. Ed. 2005, 44, 4322. (c) Peeters, E.; Christiaans,
M. P. T.; Janssen, R. A. J.; Schoo, H. F. M.; Dekkers, H. P. J. M.;
Meijer, E. W. J. Am. Chem. Soc. 1997, 119, 9909.
́
metal-catalyzed [2 + 2 + 2] cycloaddition, see: (a) Stara, I. G.; Stary,
́
I.; Kollar
̌
̌
́
ovic,
̌
A.; Teply, F.; Vyskoci
́
̌
l, S.; Saman, D. Tetrahedron Lett.
I. G.; Stary, I.; Kollarovic, A.;
̌
l, S.; Fiedler, P. J. Org. Chem. 2003, 68, 5193.
1999, 40, 1993. (b) Teply, F.; Stara,
́
́
̌
́
́
̌
̌
Saman, D.; Vyskoci
(c) Stara, I. G.; Alexandrova,
D.; Budes nsky, M.; Cvacka, J. Org. Lett. 2005, 7, 2547. (d) Caeiro, J.;
Pena, D.; Cobas, A.; Perez, D.; Guitian, E. Adv. Synth. Catal. 2006, 348,
(21) High glum values obtained by using a liquid-crystalline phase
have been reported. See: (a) Furumi, S.; Sakka, Y. Adv. Mater. 2006,
18, 775. (b) Chen, S. H.; Katsis, D.; Schmid, A. W.; Mastrangelo, J. C.;
Tsutsui, T.; Blanton, T. N. Nature 1999, 397, 506.
̌
́
́ ́
Z.; Teply, F.; Sehnal, P.; Stary, I.; Saman,
́
̌
í
̌
́
̌
́
́
̃
2466. (e) Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi, K.; Hirano, M.
J. Am. Chem. Soc. 2007, 129, 12078. (f) Tanaka, K.; Fukawa, N.; Suda,
T.; Noguchi, K. Angew. Chem., Int. Ed. 2009, 48, 5470. (g) Sehnal, P.;
̌
Stara,
Chocholouso
́
I. G.; Saman, D.; Tichy, M.; Míse
̌
k, J.; Cvack
̌
a, J.; Rulíse
̌
k, L.;
va,
́
̌
va,
́
J.; Vacek, J.; Goryl, G.; Szymonski, M.; Císaro
̌
́
I.;
4083
dx.doi.org/10.1021/ja300278e | J. Am. Chem. Soc. 2012, 134, 4080−4083