R. K. Pandey et al. / Tetrahedron Letters 53 (2012) 1627–1629
1629
4. Park, C. H.; Valore, E. V.; Waring, A. J.; Ganz, T. J. Biol. Chem. 2001, 276, 7806–
7810.
5. Peyssonnaux, C.; Zinkernagel, A. S.; Datta, V.; Lauth, X.; Johnson, R. S.; Nizet, V.
Blood 2006, 107, 3727–3732.
6. Reid, R. T.; Livet, D. H.; Faulkner, D. J.; Butler, A. Nature 1993, 366, 455–458.
7. Lee, J. Y.; Janes, B. K.; Passalacqua, K. D.; Pfleger, B. F.; Bergman, N. H.; Liu, H.;
Hakansson, K.; Somu, R. V.; Aldrich, C. C.; Cendrowski, S.; Hanna, P. C.;
Sherman, D. H. J. Bacteriol. 2007, 189, 1698–1710.
8. Zawadzka, A. M.; Abergel, R. J.; Nichiporuk, R.; Andersen, U. N.; Raymond, K. N.
Biochemistry 2009, 48, 3645–3657.
9. Abergel, R. J.; Zawadzka, A. M.; Raymond, K. N. J. Am. Chem. Soc. 2008, 130,
2124–2125.
10. Diarra, M. S.; Lavoie, M. C.; Jacques, M.; Darwish, I.; Dolence, E. K.; Dolence, J.
A.; Ghosh, A.; Ghosh, M.; Miller, M. J.; Malouin, F. Antimicrob. Agents Chemother.
1996, 40, 2610–2617.
11. Miller, M. J.; Malouin, F. Acc. Chem. Res. 1993, 26, 241–249.
12. Wencewicz, T.; Möllmann, U.; Long, T.; Miller, M. Biometals 2009, 22, 633–648.
13. Roosenberg, J. M., 2nd; Lin, Y. M.; Lu, Y.; Miller, M. J. Curr. Med. Chem. 2000, 7,
159–197.
14. Barbeau, K.; Zhang, G.; Live, D. H.; Butler, A. J. Am. Chem. Soc. 2001, 124, 378–
379.
15. Zawadzka, A. M.; Kim, Y.; Maltseva, N.; Nichiporuk, R.; Fan, Y.; Joachimiak, A.;
Raymond, K. N. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 21854–21859.
16. Carlson, P. E., Jr.; Dixon, S. D.; Janes, B. K.; Carr, K. A.; Nusca, T. D.; Anderson, E.
C.; Keene, S. E.; Sherman, D. H.; Hanna, P. C. Mol. Microbiol. 2010, 75, 900–909.
17. Gardner, R. A.; Kinkade, R.; Wang, C.; Phanstiel, O. t. J. Org. Chem. 2004, 69,
3530–3537.
18. Bugdahn, N.; Peuckert, F.; Albrecht, A. G.; Miethke, M.; Marahiel, M. A.;
Oberthür, M. Angew. Chem. Int. Ed. 2010, 49, 10210–10213.
19. Bergeron, R. J.; Huang, G.; Smith, R. E.; Bharti, N.; McManis, J. S.; Butler, A.
Tetrahedron 2003, 59, 2007–2014.
20. Oves-Costales, D.; Song, L.; Challis, G. L. Chem. Commun. 2009, 1389–1391.
21. Ishihara, K.; Kuroki, Y.; Hanaki, N.; Ohara, S.; Yamamoto, H. ChemInform. 1996,
27.
22. Kuroki, Y.; Ishihara, K.; Hanaki, N.; Ohara, S.; Yamamoto, H. ChemInform. 1998,
29.
Coupling of 11 and 13 was achieved using triethylamine (TEA)
to give protected petrobactin, 14, with an 82% conversion. The t-
butyl protecting group was removed from the citric acid moiety
of compound 14 under TFA conditions. After completion, the reac-
tion mixture was concentrated using high vacuum without heating
to avoid intramolecular imine formation between amide bonds and
tertiary acid groups of citric acid moieties.17,24 14 was debenzylat-
ed using H2-PdCl2 conditions to provide petrobactin, 1, with a 65%
yield (Scheme 3). The physical and spectroscopic data of petrobac-
tin were in full agreement with the literature data.17
Conclusion
We have shown the application of antimony triethoxide-medi-
ated ester–amide exchange for the chemical synthesis of petrobac-
tin from commercially available starting materials in 8 steps with
good overall yield (22.5%).
Acknowledgment
This work was financially supported by Department of Defense
(Contract No. W9 11SR-08-C-0001).
References and notes
1. Helgason, E.; Okstad, O. A.; Caugant, D. A.; Johansen, H. A.; Fouet, A.; Mock, M.;
Hegna, I.; Kolsto, A. B. Appl. Environ. Microbiol. 2000, 66, 2627–2630.
2. Koppisch, A. T.; Dhungana, S.; Hill, K. K.; Boukhalfa, H.; Heine, H. S.; Colip, L. A.;
Romero, R. B.; Shou, Y.; Ticknor, L. O.; Marrone, B. L.; Hersman, L. E.; Iyer, S.;
Ruggiero, C. E. Biometals 2008, 21, 581–589.
23. Sakakura, A.; Umemura, S.; Ishihara, K. Chem. Commun. 2008, 3561–3563.
24. Guo, H.; Naser, S. A.; Ghobrial, G.; Phanstiel J. Med. Chem. 2002, 45, 2056–2063.
3. Schaible, U. E.; Kaufmann, S. H. E. Nat. Rev. Microbiol. 2004, 2, 946–953.