ASYMMETRIC HDA REACTIONS OF DITHIOESTERS
355
CONCLUSION
New aspects of asymmetric thia-HDA reactions with dithioesters as heterodienophiles
were studied. In the diastereoselective version, the best result (78% de) was obtained with
a hindered oxazolidinone as the chiral auxiliary. In the enantioselective version, which
represent the first example in this topic, the best result remains 82% ee, which was ob-
tained in the cycloaddition of dithiooxalate with 2,3-dimethylbutadiene, catalyzed by a
Cu(II)/bis(oxazoline) chiral complex. The enantioselectivity of this type of cycloaddition
seems to be difficult to control because highly dependent of the substrate. The double-
differentiating experiments showed that in dithiooxalates series, the sense of the chiral
induction is mainly controlled by the chiral catalyst, whereas for the carbonyloxazolidi-
none dithioesters the chiral auxiliary dominates the stereochemical control. Stereochemical
models for catalyst/dithioester complexes were proposed in order to rationalize the sense
of the chiral induction obtained experimentally: a tetrahedral complex with a (S,O) metal
chelation for dithiooxalates and a square-planar complex with a (O,O) metal chelation for
the carbonyloxazolidinone dithioesters. Further studies are needed to expand the scope of
this asymmetric thia-HDA reaction.
REFERENCES
1. Kagan, H.B.; Riant, O. Chem. Rev. 1992, 92, 1007–1019. (b) Corey, E. J.Angew. Chem., Int. Ed.
2002, 41, 1650–1667. (c) Pellissier, H. Tetrahedron 2009, 65, 2839–2877.
2. Glass, R. S. Sci. Synth. 2005, 22, 109–132 and references cited therein.
3. See, as examples: Vedejs, E.; Arnost, M.J.; Dolphin, J.M.; Eustache, J. J. Org. Chem. 1980, 45,
2601–2604. (b) Heras, M.; Gulea, M.; Masson, S. Chem. Commun. 2001, 611–612. (c) Pfund,
E.; Lequeux, T.; Masson, S.; Vazeux, M. Tetrahedron Lett. 2002, 43, 2033–2036.
4. Heuze´, B.; Gasparova, R.; Heras, M.; Masson, S. Tetrahedron Lett. 2000, 41, 7327–7331.
(b) Heras, M.; Gulea, M.; Masson, S.; Philouze, C. Eur. J. Org. Chem. 2004, 160–172. (c) Bastin,
R.; Albadri, H.; Gaumont, A.-C.; Gulea, M. Org. Lett. 2006, 8, 1033–1036.
5. Sinnwell, S.; Inglis, A.J.; Davis, T.P.; Stenzel, M.H.; Barner-Kowollik, C. Chem. Commun. 2008,
2052–2054. (b) Inglis, A.J.; Sinnwell, S.; Stenzel, M.H.; Barner-Kowollik, C. Angew. Chem. Int.
Ed. 2009, 48, 2411–2414.
6. Herczegh, P.; Zsely, M.; Szilagyi, L.; Bognar, R. Heterocycles 1989, 28, 887–898. (b) Timo-
shenko, V.M.; Siry, S.A.; Rozhenko, A.B.; Shermolovich, Y.G. J. Fluorine Chem. 2010, 131,
172–183. (c) Qin, Y.; White, A.J. P.; Williams, D. J.; Leung, P.-H. Organometallics 2002, 21,
171–174.
7. Dentel, H.; Chataigner, I.; Le Cavelier, F.; Gulea, M. Tetrahedron Lett. 2010, 51, 6014–6017.
(b) Dentel, H.; Chataigner, I.; Lohier, J.-F.; Gulea, M. Tetrahedron 2012, 68, 2326–2335.
8. Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2011, 111, PR284–PR437. (b) Reymond,
S.; Cossy, J. Chem. Rev. 2008, 108, 5359–5406.
9. Evans, D.A.; Barnes, D. M.; Johnson, J.S.; Lectka, T.; von Matt, P.; Miller, S.J.; Murry, J.A.;
Norcross, R.D.; Shaughnessy, E.A.; Campos, K.R. J. Am. Chem. Soc. 1999, 121, 7582–7594.
(b) Landa, A.; Richter, B.; Johansen, R. L.; Minkkila¨, A.; Jørgensen, K. A. J. Org. Chem. 2007,
72, 240–245. (c) Johannsen, M.; Jørgensen, K. A. J. Org. Chem. 1995, 60, 5757–5762.
10. Only the O C-C S s-trans more stable conformer of the dienophile was considered (see the
theoretical study in reference [7]).