Chem. II, 2004, 1, 25–39; (c) E. Schoffers, Eur. J. Org. Chem., 2003, 7,
1145–1152; (d) C. L. Sun, H. Li, D. G. Yu, M. Yu, X. Zhou, X. Y. Lu,
K. Huang, S. F. Zheng, B. J. Li and Z. J. Shi, Nat. Chem., 2010,
2, 1044; (e) S. Harthong, B. Dubessy, J. Vachon, C. Aronica,
J. C. Mulatier and J. P. Dutasta, J. Am. Chem. Soc., 2010,
132, 15637; (f) C. L. Sun, Y. F. Gu, W. P. Huang and Z. J. Shi, Chem.
Commun., 2011, 47, 9813; (g) H. Li, C. L. Sun, M. Yu, D. G. Yu,
B. J. Li and Z. J. Shi, Chem.–Eur. J., 2011, 17, 3593; (h) C. L. Sun,
Y. F. Gu, B. Wang and Z. J. Shi, Chem.–Eur. J., 2011, 17, 10844.
2 (a) G. Accorsi, A. Listorti, K. Yoosaf and N. Armaroli, Chem. Soc.
Rev., 2009, 38, 1690–1700; (b) A. Lavie-Cambot, M. Cantuel,
Y. Leydet, G. Jonusauskas, D. Bassani and N. McClenaghan, Coord.
Chem. Rev., 2008, 252, 2572–2584; (c) D. Scaltrito, D. Thompson,
J. O’Callaghan and G. Meyer, Coord. Chem. Rev., 2000, 208, 243–266.
3 (a) J. Francois, M. Faria, D. Perrin and C. Giovannangeli, Nucleic
Acids and Molecular Biology, 2004, 13, 223–242; (b) C. Chen,
L. Milne, R. Landgraf, D. Perrin and D. Sigman, ChemBioChem,
2001, 2, 735–740.
4 (a) G. Chelucci, D. Addis and S. Baldino, Tetrahedron Lett., 2007, 48,
3359–3362; (b) S. Toyota, C. R. Woods, M. Benaglia and J. S. Siegel,
Tetrahedron Lett., 1998, 39, 2697–2700; (c) O. Moudam, F. Ajamaa,
A. Ekouaga, H. Mamlouk, U. Hahn, M. Holler, R. Welter and
J. F. Nierengarten, Eur. J. Org. Chem., 2007, 417–419; (d) H. Nam,
M. Jeong, O. J. Sohn, J. Rhee, J. Oh, Y. Kim and S. Lee, Inorg. Chem.
Commun., 2007, 10, 195–198; (e) A. F. Larsen and T. Ulven, Org. Lett.,
2011, 13, 3546–3548; (f) C. Metallinos, F. B. Barrett, Y. Wang,
S. F. Xu and N. J. Taylor, Tetrahedron, 2006, 62, 11145–11157;
(g) Y. Saitoh, T. Koizumi, K. Osakada and T. Yamamoto,
Can. J. Chem., 1997, 75, 1336–1339.
5 (a) P. Friedlander, Ber. Dtsch. Chem. Ges., 1882, 15, 2572; (b) C. J.
Marco-Contelles, M. E. Prez-Mayoral, A. Samadi, M. C. Carreiras and
E. Soriano, Chem. Rev., 2009, 109, 2652; (c) V. Sridharan, P. Ribelles,
M. T. Ramos and J. C. Menndez, J. Org. Chem., 2009, 74, 5715;
(d) B. L. Miller and B. R. McNaughton, Org. Lett., 2003, 5, 4257;
(e) Y. Z. Hu, G. Zhang and R. P. Thummel, Org. Lett., 2003, 5, 2251.
6 (a) A. R. Mackenzie, C. J. Moody and C. W. Rees, Tetrahedron,
1986, 42, 3259; (b) D. L. Boger and J. H. Chen, J. Org. Chem.,
1995, 60, 7369; (c) S. Y. Tanaka, M. Yasuda and A. Baba,
J. Org. Chem., 2006, 71, 800; (d) S. E. Denmark and
S. Venkatraman, J. Org. Chem., 2006, 71, 1668.
7 (a) R. H. F. Manske and M. Kulka, Org. React., 1953, 7, 59–98;
(b) B. C. Ranu, A. Hajra, S. S. Dey and U. Jana, Tetrahedron,
2003, 59, 813.
8 K. De, J. Legros, B. Crousse, S. Chandrasekaran and
D. B. Delpona, Org. Biomol. Chem., 2011, 9, 347–350.
Scheme 4 Plausible mechanism.
approaches. In general, these reactions showed great reactivity
and satisfactory yields as well. In particular, a consistent
complete regioselectivity of the reaction was observed. Only
single isomers were obtained in all examples.
A plausible mechanism for this new reaction is demonstrated
in Scheme 4. Upon activation of the possible in situ-generated
imine intermediate II from 2,2-disubstituted 3-ethoxycyclobu-
tanone (I), with Lewis acids, the more substituted C2–C3 bond
of hydrazone intermediate is broken down preferentially to
form a zwitterionic intermediate III. Subsequently the inter-
mediate III ring-closes to form the less strained six-membered
ring intermediate IV. Following this intramolecular cyclization,
an electron transfer provides intermediate V. Finally, elimina-
tion of one molecule of EtOH from V and a proton transfer
furnish the 1,10-phenanthroline product VII.
In summary, a practical protocol has been developed for the
ready synthesis of functionalized 1,10-phenanthrolines from
easily accessible starting materials at room temperature. This
method has been found to be generally useful for the preparation
of a variety of substituted 1,10-phenanthrolines some of which
are difficult to synthesize via conventional approaches. The
reaction demonstrates excellent reactivity, complete regio-
selectivity and high yields. By employing 3-ethoxycyclobutanones
as synthons for Lewis acid-catalyzed union with substituted
8-aminoquinolines, we have shown, for the first time, that this
masked 1,3-dicarbonyl synthon acts as a three-carbon synthon of
3-ethoxycyclobutanones in the preparation of unsymmetric and
symmetric 1,10-phenanthroline derivatives. Further studies using
newly synthesized 1,10-phenanthrolines as novel ligands in transi-
tion metal-catalyzed reactions are currently under investigation.
This work was supported by the national ‘973’ grant from the
Ministry of Science and Technology (grant # 2011CB965300),
National Natural Science Foundation of China (grant #
21142008) and Tsinghua University 985 Phase II funds.
9 A. Takahashi, Y. Hirose, H. Kusama and N. Iwasawa, Chem.
Commun., 2008, 609–611.
10 (a) R. W. Aben and H. W. Scheeren, J. Chem. Soc., Perkin Trans. 1,
1979, 3132; (b) J. B. Sieja, J. Am. Chem. Soc., 1971, 93, 130;
(c) J. Matsuo, S. Sasaki, H. Tanaka and H. Ishibashi, J. Am. Chem.
Soc., 2008, 130, 11600; (d) J. Matsuo, R. Okado and H. Ishibashi,
Org. Lett., 2010, 12, 3266; (e) J. Matsuo, S. Sasaki, T. Hoshikawa and
H. Ishibashi, Org. Lett., 2009, 11, 3822; (f) J. Matsuo, S. Negishi and
H. Ishibashi, Tetrahedron Lett., 2009, 50, 5831; (g) Intramolecular
reaction: J. Matsuo, S. Sasaki, T. Hoshikawa and H. Ishibashi,
Chem. Commun., 2010, 46, 934.
11 For examples of formation of zwitterionic intermediates from
cyclobutane derivatives: (a) E. A. Allart, S. D. R. Christie,
G. J. Pritchard and M. R. J. Elsegood, Chem. Commun., 2009,
7339; (b) A. T. Parsons and J. S. Johnson, J. Am. Chem. Soc., 2009,
131, 14202.
Notes and references
1 (a) A. Bencini and V. Lippolis, Coord. Chem. Rev., 2010, 254,
2096–2180; (b) C. R. Luman and F. N. Castellano, Compr. Coord.
12 G. Shan, P. Liu and Y. Rao, Org. Lett., 2011, 13, 1746.
c
2908 Chem. Commun., 2012, 48, 2906–2908
This journal is The Royal Society of Chemistry 2012