Perylene Diimide Rotaxanes
FULL PAPER
3.89 Hz, 8H) 2.61 (q, J=7.53 Hz, 4H) 1.29 (s, 32H) 1.22 ppm (t, J=
7.59 Hz, 6H); 13C NMR (126 MHz, CDCl3): d=164.12, 156.97, 156.58,
152.70, 148.75, 148.24, 144.51, 144.32, 144.07, 141.87, 141.34, 141.14,
139.97, 139.03, 134.65, 134.60, 132.31, 131.01, 130.85, 130.65, 129.28,
128.92, 128.63, 128.02, 127.27, 126.61, 125.16, 125.03, 124.71, 124.03,
123.80, 123.10, 121.69, 114.62, 114.43, 114.05, 113.52, 113.11, 105.67,
103.04, 71.51, 71.39, 71.20, 71.02, 70.79, 70.67, 70.55, 70.07, 69.84, 67.93,
67.61, 64.84, 63.11, 55.63, 53.42, 43.57, 39.27, 34.67, 34.33, 34.23, 31.93,
31.59, 31.37, 31.32, 30.32, 29.70, 29.36, 29.06, 28.18, 25.28, 22.66, 22.11,
Gomez Lopez, J. A. Preece, J. F. Stoddart, Nanotechnology 1996, 7,
183–192; f) J. D. Crowley, S. M. Goldup, A-L. Lee, D. A. Leigh,
Altieri, F. G. Gatti, E. R. Kay, D. A. Leigh, D. Martel, F. Paolucci,
8654; c) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Bever-
ly, J. Sampaio, F. M. Raymo, J. F. Stoddart, J. R. Heath, Science
Bakker, A. C. Newton, E. R. Kay, A. M. Brouwer, W. J. Buma,
[5] a) D. G. Hamilton, L. Prodi, N. Feeder, J. K. M. Sanders, J. Chem.
Vignon, T. Jarrosson, T. Iijima, H. R. Tseng, J. K. M. Sanders, J. F.
stone, N. Bampos, J. K. M. Sanders, M. J. Gunter, New J. Chem.
15.24, 14.12, 11.43 ppm; HRMS (MALDI): m/z calcd for C134H138N2O16
:
2031.00 [MÀ]; found: 2031.43.
Rotaxane 3 via melt phase: Compound 1 (25 mg, 0.018 mmol, 1 equiv)
and macrocycle 2 (58 mg, 0.091 mmol, 5 equiv) were heated to 1608C for
6 h under N2. The reaction mixture was extracted with the minimum
CHCl3 and 2 was recovered by recrystallisation from CHCl3/Et2O . The
ethereal filtrate was concentrated in vacuo and the resultant red residue
purified by column chromatography (SiO2: gradient elution 0.1% MeOH
in CHCl3 to 0.35% MeOH in CHCl3) to yield 3 as a purple solid (3 mg,
0.0015 mmol, 8%). Spectroscopic data were identical to that of the previ-
ous synthetic method, see above.
Single crystal X-ray diffraction data: A purple single crystal of 3 was suc-
cessfully grown by layering MeOH onto a solution of the compound in
toluene. Single crystal X-ray diffraction data for 3 was collected at
120(2) K on Beamline I19 at Diamond Light Source. The crystal structure
was solved by dual space methods and refined by difference Fourier tech-
niques[16] and using the OLEX2 software package.[17] Hydrogen atoms
were placed in calculated positions and refined using a riding model;
methyl groups were refined as rigid rotors. Rigid bond and similarity re-
straints were applied to the displacement parameters of all atoms. Badly
disordered solvent molecules could not be modelled and the solvent con-
tribution to the structure factors was removed using PLATON
SQUEEZE.[18] This solvent contribution was calculated to be equivalent
to 133 electrons, roughly equivalent to three toluene molecules. Crystal
data for 3: C98H94N2O6·C36H44O10, M=2266.79, triclinic, space group P-1,
a=12.3285(18) ꢃ, b=13.103(2) ꢃ, c=20.068(3) ꢃ, a=75.090(13), b=
[6] F. Wꢅrthner, Chem. Commun. 2004, 1564–1579.
[7] Y. Li, H. Li, Y. Li, H. Liu, S. Wang, X. He, N. Wang, D. Zhu, Org.
[8] J. Baggerman, D. C. Jagesar, R. A. L. Vallꢆe, J. Hofkens, F. C. De
˘
´
[9] P. R. Ashton, M. Belohhradsky, D. Philp, J. F. Stoddart, J. Chem.
Soc. Chem. Commun. 1993, 16, 1269–1274.
[10] a) M. Zorn, S. A. L. Weber, M. N. Tahir, . W. Tremel, H.-J. Butt, R.
[11] T. Iijima, S. A. Vignon, H.-R. Tseng, T. Jarrosson, J. K. M. Sanders,
F. Marchioni, M. Venturi, E. Apostoli, V. Balzani, J. F. Stoddart,
[12] D. G. Hamilton, J. E. Davies, L. Prodi, J. K. M. Sanders, Chem. Eur.
[13] P. L. Anelli, P. R. Ashton, N. Spencer, A. M. Z. Slawin, J. F. Stod-
78.565(13), g=89.624(12)8,V=3067.0(8) ꢃ3, Z=1, T=120(2) K, F000
=
1210, 1=1.227 gcmÀ3, m=0.078 mmÀ1, 41004 reflections measured, 10935
unique (Rint =0.161) which were used in all calculations. Final R1 =0.133,
wR2 =0.386, Goof=0.98, maximum DF peak 0.68 eꢃÀ3. CCDC-843319
(3) contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallo-
[14] a) T. W. Chamberlain, E. S. Davies, A. N. Khlobystov, N. R. Champ-
Davies, S. P. Argent, J. E. Warren, A. J. Blake, N. R. Champness,
S. P. Argent, W. Alsindi, A. J. Blake, J. E. Warren, J. McMaster,
Acknowledgements
We thank the EPSRC and the University of Nottingham for support and
funding, and Diamond Light Source for the award of access to Beamline
I19. N.R.C. gratefully acknowledges receipt of a Royal Society Wolfson
Merit Award.
[15] S.-G. Chen, H. M. Branz, S. S. Eaton, P. C. Taylor, R. A. Cormier,
[17] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H.
A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194–201.
c) J. P. Sauvage, Chem. Commun. 2005, 12, 1507–1510; d) T. J.
Received: October 3, 2011
Published online: December 1, 2011
Chem. Eur. J. 2011, 17, 14746 – 14751
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
14751