all three thiols studied is roughly equivalent, the three reactions
led to similar yields. On the other hand, in batch processes
(in-cell method), product yields would be dependent on the
oxidation potential of benzenethiols used because catechol and
benzenethiols are mixed in the same electrolytic cell in these
cases. Hence, the yields for batch processes are all low because
of competitive oxidation of the thiol nucleophile.
13 Y. Sagawa, S. Kobayashi and T. Mukaiyama, Chem. Lett., 1988,
1105.
14 H. W. Wanzlick, Angew. Chem., Int. Ed. Engl., 1964, 3, 401;
M. E. Jung and F. Perez, Org. Lett., 2009, 11, 2165.
15 A. R. Fakhari, D. Nematollahi, M. Shamsipur, S. Makarem, S. S.
H. Davarani, A. Alizadeh and H. Khavasi, Tetrahedron, 2007,
63, 3894; D. Nematollahi, D. Habibi, M. Rahmati and M. Rafiee,
J. Org. Chem., 2004, 69, 2637; D. Nematollahi and E. Tammari,
J. Org. Chem., 2005, 70, 7769; C.-C. Zeng, F.-J. Liu, D.-W. Ping,
Y.-L. Cai, R.-G. Zhong and J. Y. Becker, J. Electroanal. Chem., 2009,
625, 131; S. M. Golabi and D. Nematollahi, J. Electroanal. Chem.,
1997, 420, 127.
16 J. Yoshida, A. Nagaki and T. Yamada, Chem.–Eur. J., 2008,
14, 7450; B. P. Mason, K. E. Price, J. L. Steinbacher,
A. R. Bogdan and D. T. McQuade, Chem. Rev., 2007, 107, 2300;
K. F. Jensen, Chem. Eng. Sci., 2001, 56, 293; Microreactors, ed.
In summary, we have developed an effective method for the
generation and reaction of o-benzoquinone using a microflow
system. The key features of the method are an effective
o-benzoquinone generation and its rapid use for the following
reaction in the microflow system. It is hoped that this facile and
novel reaction system will highlight the utility of flow reactors
for optimizing reactions involving sensitive intermediates.
¨
W. Ehrfeld, V. Hessel and H. Lowe, Wiley-VCH, Weinheim, 2000;
Microsystem Technology in Chemistry and Life Sciences, ed.,
A. Manz and H. Becker, Springer, Berlin, 1999; S. J. Haswell,
P. D. I. Fletcher, G. M. Greenway, V. Skelton, P. Styring,
D. O. Morgan, S. Y. F. Wong and B. H. Warrington, in Automated
Synthetic Methods for Speciality Chemicals, ed. W. Hoyle, Royal
Society of Chemistry, 1999, p. 26; Microreaction Technology, ed.
W. Ehrfeld, Springer, Berlin, 1998.
Notes and references
1 J. Booth, E. Boyland and E. E. Turner, J. Chem. Soc., 1950, 1188.
2 W. A. Pieken and J. W. Kozarich, J. Org. Chem., 1989, 54, 510.
3 S. J. Danishefsky and S. Mazza, J. Org. Chem., 1974, 39, 3610;
J. Paquet and P. Brassard, Can. J. Chem., 1989, 67, 1354; J. Lee
and J. K. Snyder, J. Org. Chem., 1990, 55, 4995; J. Lee, J.-H. Li,
S. Oya and J. K. Snyder, J. Org. Chem., 1992, 57, 5301; V. Nair,
D. Maliakal, P. M. Treesa, N. P. Rath and G. K. Eigendorf,
Synthesis, 2000, 850; C. J. Abraham, D. H. Paull, T. Bekele,
M. T. Scerba, T. Dudding and T. Lectka, J. Am. Chem. Soc.,
2008, 130, 17085.
4 A. Takuwa, R. Kai, K.-I. Kawasaki, Y. Nishigaichi and
H. Iwamoto, J. Chem. Soc., Chem. Commun., 1996, 703; V. Nair,
J. S. Nair, A. U. Vinod and N. P. Rath, J. Chem. Soc., Perkin
Trans. 1, 1997, 3129; V. Nair, K. C. Sheela, K. V. Radhakrishnan
and N. P. Rath, Tetrahedron Lett., 1998, 39, 5627; P. Nebois and
H. Fillion, Heterocycles, 1999, 50, 1137.
17 H. Usutani, Y. Tomida, A. Nagaki, H. Okamoto, T. Nokami and
J. Yoshida, J. Am. Chem. Soc., 2007, 129, 3046; A. Nagaki, H. Kim
and J. Yoshida, Angew. Chem., Int. Ed., 2008, 47, 7833.
18 G. Liu, J. T. Link, Z. Pei, E. B. Reilly, S. Leitza, B. Nguyen,
K. C. Marsh, G. F. Okasinski, T. W. von Geldern, M. Ormes,
K. Fowler and M. Gallatin, J. Med. Chem., 2000, 43, 4025;
Y. Wang, S. Chackalamannil, W. Chang, W. Greenlee,
V. Ruperto, R. A. Duffy, R. McQuade and J. E. Lachowicz,
Bioorg. Med. Chem. Lett., 2001, 11, 891; B. Bonnet, D. Soullez,
S. Girault, L. Maes, V. Landry, E. Davioud-Charvet and
C. Sergheraert, Bioorg. Med. Chem., 2000, 8, 95; J. S. Sawyer,
E. A. Schmittling, J. A. Palkowitz and W. J. Smith III, J. Org.
Chem., 1998, 63, 6338; C. P. Baird and C. M. Rayner, J. Chem.
Soc., Perkin Trans. 1, 1998, 1973; D. J. Procter, J. Chem. Soc.,
Perkin Trans. 1, 2001, 335; P. S. Herradura, K. A. Pendola and
R. K. Guy, Org. Lett., 2000, 2, 2019; M.-L. Alcaraz, S. Atkinson,
P. Cornwall, A. C. Foster, D. M. Gill, L. A. Humphries,
P. S. Keegan, R. Kemp, E. Merifield, R. A. Nixon, A. J. Noble,
D. O’Beirne, Z. M. Patel, J. Perkins, P. Rowan, P. Sadler,
J. T. Singleton, J. Tornos, A. J. Watts and I. A. Woodland,
Org. Process Res. Dev., 2005, 9, 555.
5 L. Viallon, O. Reinaud, P. Capdevielle and M. Maumy, Tetrahedron
Lett., 1995, 36, 6669.
6 N. G. Kundu, J. Chem. Soc., Chem. Commun., 1979, 564.
7 F. H. Osman and F. A. El-Samahy, Chem. Rev., 2002, 102, 629.
8 Y. Suzuki and H. Matano, J. Chem. Soc., Chem. Commun., 1996, 2697.
9 S. Itoh, K. Nii, M. Mure and Y. Ohshiro, Tetrahedron Lett., 1972,
34, 3975.
10 A. L. Balch and Y. S. Sohn, J. Organomet. Chem., 1971, 30, C31.
11 H. W. Moore, K. F. West, U. Wriede, K. Chow, M. Fernandez
and N. G. Nguyen, J. Org. Chem., 1987, 52, 2537.
19 D. Nematollahi, M. Rafiee and A. Samadi-Maybodi, Electrochim.
Acta., 2004, 49, 2495; M. F. Ansell and A. F. Gosden, Chem.
Commun., 1965, 520; E. Voisin and V. E. William, Macromolecules,
2008, 41, 2994; M. D. Ryan, A. Yueh and W.-Y. Chen,
J. Electrochem. Soc., 1980, 127, 1489.
12 K. Maruyama, A. Takuwa, Y. Naruta, K. Satao and O. Soga,
Chem. Lett., 1981, 47; A. Takuwa, O. Soga, T. Mishima and
K. Maruyama, J. Org. Chem., 1987, 52, 1261.
c
2808 Chem. Commun., 2012, 48, 2806–2808
This journal is The Royal Society of Chemistry 2012