Molecules 2021, 26, 894
12 of 13
References
1.
2.
3.
4.
Häupler, B.; Wild, A.; Schubert, U.S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5,
Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Opportunities and Challenges for Organic Electrodes in
Electrochemical Energy Storage. Chem. Rev. 2020, 120, 6490–6557. [CrossRef]
Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S.-K.; Lim, H.-D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na
Rechargeable Batteries. Adv. Mater. 2018, 30, 1704682. [CrossRef]
Lee, S.; Kwon, J.E.; Hong, J.; Park, S.Y.; Kang, K. The role of substituents in determining the redox potential of organic electrode
materials in Li and Na rechargeable batteries: Electronic effects vs. substituent-Li/Na ionic interaction. J. Mater. Chem. A 2019, 7,
5.
6.
7.
8.
9.
Obrezkov, F.A.; Shestakov, A.F.; Traven, V.F.; Stevenson, K.J.; Troshin, P.A. An ultrafast charging polyphenylamine-based cathode
material for high rate lithium, sodium and potassium batteries. J. Mater. Chem. A 2019, 7, 11430–11437. [CrossRef]
Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in
Metal-Ion Batteries. Chem 2018, 4, 2786–2813. [CrossRef]
Zhang, K.; Guo, C.; Zhao, Q.; Niu, Z.; Chen, J. High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and
9,10-Anthraquinone (AQ)/CMK-3 Cathode. Adv. Sci. 2015, 2, 1500018. [CrossRef]
Lee, J.; Park, M.J. Tattooing Dye as a Green Electrode Material for Lithium Batteries. Adv. Energy Mater. 2017, 7, 1602279.
Wang, G.; Chandrasekhar, N.; Biswal, B.P.; Becker, D.; Paasch, S.; Brunner, E.; Addicoat, M.; Yu, M.; Berger, R.; Feng, X. A
Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Adv. Mater. 2019, 31, 1901478. [CrossRef]
10. Liang, Y.; Chen, Z.; Jing, Y.; Rong, Y.; Facchetti, A.; Yao, Y. Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast
Energy Storage Capability. J. Am. Chem. Soc. 2015, 137, 4956–4959. [CrossRef] [PubMed]
11. Oyaizu, K.; Nishide, H. Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers? Adv.
12. Choi, W.; Ohtani, S.; Oyaizu, K.; Nishide, H.; Geckeler, K.E. Radical Polymer-Wrapped SWNTs at a Molecular Level: High-Rate
Redox Mediation Through a Percolation Network for a Transparent Charge-Storage Material. Adv. Mater. 2011, 23, 4440–4443.
13. Deng, S.-R.; Kong, L.-B.; Hu, G.-Q.; Wu, T.; Li, D.; Zhou, Y.-H.; Li, Z.-Y. Benzene-based polyorganodisulfide cathode materials for
secondary lithium batteries. Electrochim. Acta 2006, 51, 2589–2593. [CrossRef]
14. Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Dimercaptan–polyaniline composite electrodes for lithium batteries with high
energy density. Nature 1995, 373, 598–600. [CrossRef]
15. Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J.M. Conjugated dicarboxylate anodes for Li-ion
16. Fédèle, L.; Sauvage, F.; Gottis, S.; Davoisne, C.; Salager, E.; Chotard, J.-N.; Becuwe, M. 2D-Layered Lithium Carboxylate Based on
Biphenyl Core as Negative Electrode for Organic Lithium-Ion Batteries. Chem. Mater. 2017, 29, 546–554. [CrossRef]
17. Min, D.J.; Miomandre, F.; Audebert, P.; Kwon, J.E.; Park, S.Y. s-Tetrazines as a New Electrode-Active Material for Secondary
18. Wiberg, K.B.; Lewis, T.P. Polarographic reduction of the azines. J. Am. Chem. Soc. 1970, 92, 7154–7160. [CrossRef]
19. Clavier, G.; Audebert, P. s-Tetrazines as Building Blocks for New Functional Molecules and Molecular Materials. Chem. Rev. 2010
,
20. Fritea, L.; Audebert, P.; Galmiche, L.; Gorgy, K.; Le Goff, A.; Villalonga, R.; Săndulescu, R.; Cosnier, S. First Occurrence of
Tetrazines in Aqueous Solution: Electrochemistry and Fluorescence. ChemPhysChem 2015, 16, 3695–3699. [CrossRef]
21. Samanta, S.; Ray, S.; Ghosh, A.B.; Biswas, P. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz) mediated metal-free mild oxidation of
thiols to disulfides in aqueous medium. RSC Adv. 2016, 6, 39356–39363. [CrossRef]
22. Vadehra, G.S.; Maloney, R.P.; Garcia-Garibay, M.A.; Dunn, B. Naphthalene Diimide Based Materials with Adjustable Redox
Potentials: Evaluation for Organic Lithium-Ion Batteries. Chem. Mater. 2014, 26, 7151–7157. [CrossRef]
23. Kim, H.; Kwon, J.E.; Lee, B.; Hong, J.; Lee, M.; Park, S.Y.; Kang, K. High Energy Organic Cathode for Sodium Rechargeable
Batteries. Chem. Mater. 2015, 27, 7258–7264. [CrossRef]
24. Park, Y.; Shin, D.-S.; Woo, S.H.; Choi, N.S.; Shin, K.H.; Oh, S.M.; Lee, K.T.; Hong, S.Y. Sodium Terephthalate as an Organic Anode
Material for Sodium Ion Batteries. Adv. Mater. 2012, 24, 3562–3567. [CrossRef]
25. Schon, T.B.; McAllister, B.T.; Li, P.-F.; Seferos, D.S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016
,
26. Abdel, N.O.; Kira, M.A.; Tolba, M.N. A direct synthesis of dihydrotetrazines. Tetrahedron Lett. 1968, 9, 3871–3872. [CrossRef]
27. Audebert, P.; Sadki, S.; Miomandre, F.; Clavier, G.; Claude Vernières, M.; Saoud, M.; Hapiot, P. Synthesis of new substituted
tetrazines: Electrochemical and spectroscopic properties. New J. Chem. 2004, 28, 387–392. [CrossRef]
28. Cardona, C.M.; Li, W.; Kaifer, A.E.; Stockdale, D.; Bazan, G.C. Electrochemical considerations for determining absolute frontier
orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 2011, 23, 2367–2371. [CrossRef] [PubMed]