Page 7 of 6
ACS Medicinal Chemistry Letters
krishnan, R.; Quinn, S.; Soria, J.-C. Neratinib, an irreversible pan-ErbB
L. M.; Chmait, S.; Lee, M. R.; Mohr, C.; Hsieh, F.; Tasker, A. S. Discov-
ery and evaluation of 7-alkyl-1,5-bis-aryl-pyrazolopyridinones as highly
potent, selective, and orally efficacious inhibitors of p38α mitogen-
activated protein kinase J. Med. Chem. 2010, 53, 2973-2985.
24) Wurz, R. P.; Pettus, L. H.; Xu, S.; Henkle, B.; Sherman, L.; Plant, M.;
Miner, K.; McBride, H.; Wong, L. M.; Saris, C. J. M.; Lee, M. R.;
Chmait, S.; Mohr, C.; Hsieh, F.; Tasker, A. T. Part 1: Structure-activity
relationship (SAR) investigations of fused pyrazoles as potent, selective
and orally available inhibitors of p38α mitogen-activated protein kinase
Bioorg. Med. Chem. Lett. 2009, 19, 4724-4728.
25) Chang, S.; Zhang, L.; Xu, S.; Luo, J.; Lu, X.; Zhang, Z.; Xu, T.; Liu,
Y.; Tu, Z.; Xu, Y.; Ren, X.; Geng, M.; Ding, J.; Pei, D.; Ding, K. Design,
synthesis, and biological evaluation of novel conformationally constrained
inhibitors targeting epidermal growth factor receptor threonine790 → me-
thionine790 mutant J. Med. Chem. 2012, 55, 2711-2723.
26) Xu, S.; Xu, T.; Zhang, L.; Zhang, Z.; Luo, J.; Liu, Y.; Lu, X.; Tu, Z.;
Ren, X.; Ding, K. Design, synthesis and biological evaluation of 2-oxo-
3,4-dihydropyrimido[4,5-d]pyrimidinyl derivatives as new irreversible
epidermal growth factor receptor inhibitors with improved pharmacokinet-
ic properties J. Med. Chem. 2013, 56, 8803-8813.
27) Xu, T.; Zhang, L.; Xu, S.; Yang, C.-Y.; Luo, J.; Ding, F.; Lu, X.; Liu,
Y.; Tu, Z.; Li, S.; Pei, D.; Cai, Q.; Li, H.; Ren, X.; Wang, S.; Ding, K.
Pyrimido[4,5-d]pyrimidin-4(1H)-one derivatives as selective inhibitors of
EGFR threonine790 to methionine790 (T790M) mutants Angew. Chem. Int.
Ed. 2013, 52, 8387-8390.
28) Zhou, W.; Liu, X.; Tu, Z.; Zhang, L.; Ku, X.; Bai, F.; Zhao, Z.; Xu,
Y.; Ding, K.; Li, H. Discovery of pteridin-7(8H)-one-based irreversible
inhibitors targeting the epidermal growth factor receptor (EGFR) kinase
T790M/L858R mutant J. Med. Chem. 2013, 56, 7821-7837.
29) Wurz, R.; Tasker, A.; Tadesse, S.; Pettus, L. H.; Nguyen, T. T.; Hong,
F.-T.; Herberich, B. J.; Harrington, E.; Chen, J. J.; Brown, J. Substituted
7-oxo-pyrido[2,3-d]pyrimidines and their use for the treatment of
EGFR/ERBB2 related disorders. Patent application: WO 2014/134308,
2014.
30) For related work see: Ding, K.; Xu, T.; Ding, F.; Zhang, L.; Lu, X.;
Li, W.; Ding, J.; Geng, M. 7-Oxo-pyridopyrimidine derivatives, pharma-
ceutical compositions and uses thereof. Patent application: WO
2014/079232, 2014.
receptor tyrosine kinase inhibitor: results of a phase II trial in patients with
advanced non-small-cell lung cancer. J. Clin. Onc. 2010, 28, 3076-3083.
12) Rabindran, S. K.; Discafani, C. M.; Rosfjord, E. C.; Baxter, M.;
Floyd, M. B.; Golas, J.; Hallett, W. A.; Johnson, B. D.; Nilakantan, D.;
OverBeek, E.; Reich, M. F.; Shen, R.; Shi, X.; Tsou, H. R.; Wang, Y. F.;
Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible
inhibitor of the Her-2 tyrosine kinase. Cancer Res. 2004, 64, 3958-3965
13) Reckamp, K. L.; Giaccone, G.; Camidge, D. R.; Gadgeel, S. M.;
Khuri, F. R.; Engelman, J. F.; Koczywas, M.; Rajan, A.; Campbell, A. K.;
Gernhardt, D.; Ruiz-Garcia, A.; Letrent, S.; Liang, J.; Taylor, I.;
O’Connell, J. P.; Jänne, P. A. A Phase 2 trial of dacomitinib (PF-
00299804), an oral, irreversible pan-HER (human epidermal growth factor
receptor) inhibitor, in patients with advanced non-small cell lung cancer
after failure of prior chemotherapy and erlotinib. Cancer 2014, 120, 1145-
1154.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
14) Dungo, R. T.; Keating, G. M. Afatinib: first global approval. Drugs
2013, 73, 1503-1515.
15) Zhou, W.; Ercan, D.; Chen, L.; Yun, C.-H.; Li, D.; Capelletti, M.;
Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong,
K.-K.; Eck, M. J.; Gray, N. S.; Jänne, P. A. Novel mutant-selective EGFR
kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070-1074.
16) Walter, A. O.; Sjin, R. T. T.; Haringsma, H. J.; Ohashi, K.; Sun, J.;
Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z.; Wang, Z.; Sheets, M.; St.
Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D.; Nacht, M.;
Petter, R. C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; Van Dyke,
T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A. D.; Harding, T.
C.; Allen, A. Discovery of a mutant-selective covalent inhibitor of EGFR
that overcomes T790M mediated resistance in NSCLC. Cancer Disc.
2013, 3, 1404-1415.
17) Cross, D. A. E.; Ashton, S. E.; Ghiorghui, S.; Eberlein, C.; Nebhan, C.
A.; Spitzler, P. J.; Orme, J. P.; Finlay, M. R. V.; Ward, R. A.; Mellor, M.
J.; Hughes, G.; Rahi, A.; Jacobs, V. N.; Brewer, M. R.; Ichihara, E.; Sun,
J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.;
Richmond, G. H. P.; Cantarini, M.; Kim, D.-W.; Ranson, M. R.; Pao, W.
AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated re-
sistance to EGFR inhibitors in lung cancer. Cancer Disc. 2014, 4, 1046-
1061.
18) Finlay, M. R. V.; Anderton, M.; Ashton, S.; Ballard, P.; Bethel, P. A.;
Box, M. R.; Bradbury, R. H.; Brown, S. J.; Butterworth, S.; Campbell, A.;
Chorley, C.; Colclough, N.; Cross, D. A. E.; Currie, G. S.; Grist, M.;
Hassall, L.; Hill, G. B.; James, D.; James, M.; Kemmitt, P.; Klinowska,
T.; Lamont, G.; Lamont, S. G.; Martin, N.; McFarland, H. L.; Mellor, M.
J.; Orme, J. P.; Perkins, D.; Perkins, P.; Richmond, G.; Smith, P.; Ward,
R. A.; Waring, M. J.; Whittaker, D.; Wells, S.; Wrigley, G. L. Discovery
of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing
and T790M resistance mutations that spares wild type. J. Med. Chem.
2014, 57, 8249-8267.
19) For an account on the research leading up to the discovery of AZD-
9291 see: Ward, R. A.; Anderton, M. J.; Ashton, S.; Bethel, P. A.; Box,
M.; Butterworth, S.; Colclough, N.; Chorley, C. G.; Chuaqui, C.; Cross,
D. A. E.; Dakin, L. A.; Debreczeni, J. E.; Eberlein, C.; Finlay, M. R. V.;
Hill, G. B.; Grist, M.; Klinowska, T. C. M.; Lane, C.; Martin, S.; Orme, J.
P.; Smith, P.; Wang, F.; Waring, M. J. Structure- and reactivity-based
development of covalent inhibitors of the activating and gatekeeper mu-
tant forms of the epidermal growth factor receptor (EGFR). J. Med. Chem.
2013, 56, 7025-7048.
20) It should be noted that there has also been an effort on the develop-
ment of reversible EGFRT790M selective inhibitors, see for example: Lee,
H.-J.; Schaefer, G.; Heffron, T. P.; Shao, L.; Ye, X.; Sideris, S.; Malek, S.;
Chan, E.; Merchant, M.; La, H.; Ubhayakar, S; Yauch, R. L.; Pirazzoli,
V.; Politi, K.; Settleman, J. Noncovalent Wild-type-sparing inhibitors of
EGFR T790M. Cancer Disc. 2013, 3, 168-181.
21) Sogabe, S.; Kawakita, Y.; Igaki, S.; Iwata, H.; Miki, H.; Cary, D. R.;
Takagi, T.; Takagi, S.; Ohta, Y.; Ishikawa, T. Structure-based approach
for the discovery of pyrrolo[3,2-d]pyrimidine-based EGFR T790M/L858R
mutant inhibitors. ACS Med. Chem. Lett. 2013, 4, 201-205
31) Apsunde, T.; Wurz, R. P. Pyridin-2-one synthesis using ester enolates
and aryl aminoaldehydes and ketones. J. Org. Chem. 2014, 79, 3260-
3266.
32) See for example: Gowan, S. M.; Hardcastle, A.; Hallsworth, A. E.;
Valenti, M. R.; Hunter, L.-J. K.; de Haven Brandon, A. K.; Garrett, M. D.;
Raynaud, F.; Workman, P.; Aherne, W.; Eccles, S. A. Application of
meso scale technology for the measurement of phosphoproteins in human
tumor xenografts. Assay Drug Dev. Technol. 2007, 5, 391-401.
33) The KM[ATP] values for EGFRWT
, ,
EGFRT790M EGFRL858R and
EGFRT790M/L858R are 5.2, 5.9, 148 and 8.4 μM, respectively, see: Yun, C.-
H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; Greulich, H.; Wong,
K.-K.; Meyerson, M.; Eck, M. J. the T790M mutation in EGFR kinase
causes drug resistance by increasing the affinity for ATP. Proc. Natl.
Acad. Sci. USA 2008, 105, 2070-2075.
34) Data not shown.
35) See Figure 3 in Supporting Information.
36) For a discussion on preclinical ADME properties of 10 clinically late
stage or marketed covalent inhibitors see: Moghaddam, M. F.; Tang, Y.;
O’Brien, Z.; Richardson, S. J.; Bacolod, M.; Chaturvedi, P.; Apuy, J.;
Kulkarni, A. A proposed screening paradigm for discovery of covalent
inhibitor drugs. Drug Metab. Lett. 2014, 8, 19-30.
37) For a discussion on reactivity of acrylamides with glutathione see:
Naven, R. T.; Kantesaria, S.; Nadanaciva, S.; Schroeter, T.; Leach, K. L.
High throughput glutathione and Nrf2 assays to assess chemical and bio-
logical reactivity of cysteine-reactive compounds. Toxicol. Res. 2013, 2,
235-244.
38) See Figure 1 in Supporting Information for results.
39) See Figure 2 in Supporting Information for results.
40) See Supporting Information for details.
22) Hanan, E. J.; Eigenbrot, C.; Bryan, M. C.; Burdick, D. J.; Chan, B. K.;
Chen, Y.; Dotson, J.; Heald, R. A.; Jackson, P. S.; La, H.; Lainchbury, M.
D.; Malek, S.; Purkey, H. E.; Schaefer, G.; Schmidt, S.; Seward, E. M.;
Sideris, S.; Tam, C.; Wang, S.; Yeap, S. K.; Yen, I.; Yin, J.; Yu, C.; Zil-
berleyb, I.; Heffron, T. P. Discovery of selective and noncovalent dia-
minopyrimidine-based inhibitors of epidermal growth factor receptor
containing the T790M resistance mutation. J. Med. Chem. 2014, 57,
10176-10191.
23) Pettus, L. H.; Wurz, R. P.; Xu, S.; Herberich, B.; Henkle, B.; Liu, Q.;
McBride, H. J.; Mu, S.; Plant, M. H.; Saris, C. J. M.; Sherman, L.; Wong,
6
ACS Paragon Plus Environment