3-dihydrofuran which upon heating in the presence of
p-toluenesulfonic acid afforded furan 4ja. Encouraged by this
result, we examined the influence of structural alteration of
coupling partners (Table 4). We observed that elimination of
amines occurs spontaneously for the diazo compounds with
mono ketones obviating acid treatment (see the footnotes to
Table 4). Use of 3-amino-2-alkenone 2e in place of b-amino
acrylate also gave 4je in 71% yield. Reaction of cyclic a-diazo-
b-diketone 1m smoothly proceeded to give fused bicyclic furan
4me. In addition to a-diazo-b-dicarbonyl compounds, a-diazo-a-
aryl ketone 1n afforded aryl substituted furan 4na. More elaborate
a-diazo-a-aryl ketones bearing alkyl and aryl moieties allowed for
the formation of the corresponding furans (Table 4, 4oe and 4pe).
Furthermore, reaction of diazo compound 1q bearing a 2-furanyl
group with 1a also smoothly proceeded to give 4qa in 61% yield.
Use of b-tetralone-derived diazo compound 1r gave the tricyclic
furan 4re in good yield, resulting from spontaneous oxidation.
Mechanistically, we propose that nucleophilic attack of B
on carbenoid A leads to formation of C that may undergo
either cyclopropanation to give D followed by ring expansion
or direct cyclization of E via metallotropy to afford F (eqn (2)).
Notes and references
1 (a) S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076–2080; (b) R. C. D.
Brown, Angew. Chem., Int. Ed., 2005, 44, 850–852; (c) X.-L. Hou,
Z. Yang, K.-S. Yeung and H. N. C. Wong, in Progress in
Heterocyclic Chemistry, ed. W. G. Gordon and A. J. John, Elsevier,
2009, vol. 21, pp. 179–223; (d) W. Dennis L, in Progress in Hetero-
cyclic Chemistry, ed. W. G. Gordon and A. J. John, Elsevier, 2005,
vol. 17, pp. 1–32.
2 (a) F. R. Petronijevic and P. Wipf, J. Am. Chem. Soc., 2011, 133,
7704–7707; (b) B. M. Trost and P. J. McDougall, Org. Lett., 2009,
11, 3782–3785; (c) R. Medimagh, S. Marque, D. Prim, S. Chatti
and H. Zarrouk, J. Org. Chem., 2008, 73, 2191–2197.
3 (a) J. Boonsompat and A. Padwa, J. Org. Chem., 2011, 76,
2753–2761; (b) H. Zhang, J. Boonsombat and A. Padwa, Org.
Lett., 2006, 9, 279–282.
4 S. Kiren, X. Hong, C. A. Leverett and A. Padwa, Org. Lett., 2009,
11, 1233–1235.
5 K. C. Nicolaou, P. S. Baran, Y. L. Zhong, K. C. Fong and
H. S. Choi, J. Am. Chem. Soc., 2002, 124, 2190–2201.
6 (a) M. Murai, K. Miki and K. Ohe, Chem. Commun., 2009,
3466–3468; (b) P. Liu, M. Lei, L. Ma and L. Hu, Synlett, 2011,
1133–1136.
7 R. J. Rahaim and R. E. Maleczka, Org. Lett., 2005, 7, 5087–5090.
8 R. Medimagh, S. Marque, D. Prim and S. Chatti, Org. Biomol.
Chem., 2011, 9, 6055–6065.
9 (a) S. Kramer, J. L. H. Madsen, M. Rottlander and T. Skrydstrup,
¨
Org. Lett., 2010, 12, 2758–2761; (b) H. Li and R. P. Hsung, Org.
Lett., 2009, 11, 4462–4465; (c) A. Padwa, K. R. Crawford,
P. Rashatasakhon and M. Rose, J. Org. Chem., 2003, 68,
2609–2617.
10 (a) V. Nair and A. U. Vinod, Chem. Commun., 2000, 1019–1020;
(b) R. Mossetti, D. Caprioglio, G. Colombano, G. C. Tron and
T. Pirali, Org. Biomol. Chem., 2011, 9, 1627–1631.
11 (a) V. F. Ferreira, Curr. Org. Chem., 2007, 11, 177–193; (b) J. Barluenga,
´ ´
L. Riesgo, R. n. Vicente, L. A. Lopez and M. Tomas, J. Am. Chem.
Soc., 2008, 130, 13528–13529; (c) E. Lourdusamy, L. Yao and
C.-M. Park, Angew. Chem., Int. Ed., 2010, 49, 7963–7967.
12 J. R. Davies, P. D. Kane and C. J. Moody, Tetrahedron, 2004, 60,
3967–3977.
13 H. M. L. Davies, G. Ahmed, R. L. Calvo, M. R. Churchill and
D. G. Churchill, J. Org. Chem., 1998, 63, 2641–2645.
14 (a) A. Padwa and S. K. Bur, Tetrahedron, 2007, 63, 5341–5378;
(b) S. Muthusamy and J. Krishnamurthi, in Synthesis of
Heterocycles via Cycloadditions I, ed. A. Hassner, 2008, vol. 12,
pp. 147–192.
15 (a) L.-B. Zhao, Z.-H. Guan, Y. Han, Y.-X. Xie, S. He and
Y.-M. Liang, J. Org. Chem., 2007, 72, 10276–10278;
(b) Y. R. Lee and J. Y. Suk, Tetrahedron, 2002, 58, 2359–2367;
(c) T. Johnson, D. R. Cheshire, M. J. Stocks and V. T. Thurston,
Synlett, 2001, 0646–0648; (d) Y. Zhu, C. Zhai, L. Yang and W. Hu,
Chem. Commun., 2010, 46, 2865–2867.
ð2Þ
In summary, we described an efficient dual synthetic manifold
for both 2-aminofurans and 2-unsubstituted furans. This has been
achieved by reaction of carbenoids with enamines to afford
2-amino-2,3-dihydrofurans, which depending on the choice
of subsequent conditions furnish either 2-aminofurans or
2-unsubstituted furans in good yields.
We gratefully acknowledge Nanyang Technological University
Start Up Grant and Tier 1 Grant RG 25/09 for the funding of
this research.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3133–3135 3135