5186 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 16
Thuaud et al.
(2) Proksch, P.; Edrada, R.; Ebel, R.; Bohnenstengel, F.; Nugroho, B.
Chemistry and biological activity of rocaglamide derivatives and
related compounds in Aglaia species (Meliaceae). Curr. Org. Chem.
2001, 5, 923–938.
(3) King, M. L.; Chiang, C. C.; Ling, H. C.; Fujita, E.; Ochiai, M.;
McPhail, A. T. X-Ray crystal structure of rocaglamide, a novel
antileukemic 1H-cyclopenta[b]benzofuran from Aglaia elliptifolia.
Chem. Commun. 1992, 1150–1151.
(4) Bohnenstengel, F. I.; Steube, K. G.; Meyer, C.; Nugroho, B. W.;
Hung, P. D.; Kiet, L. C.; Proksch, P. Structure activity rela-
tionships of antiproliferative rocaglamide derivatives from
Aglaia species (Meliaceae). Z. Naturforsch., C: J. Biosci. 1999, 54,
55–60.
(21) Lee, J. W.; Fuchs, P. L. Reduction of azides to primary amines in
substrates bearing labile ester functionality. Synthesis of a PEG-
solubilized, “Y”-shaped iminodiacetic acid reagent for preparation
of folate-tethered drugs. Org. Lett. 1999, 1, 179–181.
(22) Baumann, B.; Bohnenstengel, F.; Siegmund, D.; Wajant, H.;
Weber, C.; Herr, I.; Debatin, K. M.; Proksch, P.; Wirth, T.
Rocaglamide derivatives are potent inhibitors of NF-kappa B
activation in T-cells. J. Biol. Chem. 2002, 277, 44791–44800.
(23) Levin, B.; Amos, C. Therapy of unresectable hepatocellular carci-
noma. N. Engl. J. Med. 1995, 332, 1294–1296.
(24) Force, T.; Krause, D. S.; Van Etten, R. A. Molecular mechanisms
of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer
2007, 7, 332–344.
(5) Bohnenstengel, F. I.; Steube, K. G.; Meyer, C.; Quentmeier, H.;
Nugroho, B. W.; Proksch, P. 1H-Cyclopenta[b]benzofuran lignans
from Aglaia species inhibit cell proliferation and alter cell cycle
distribution in human monocytic leukemia cell lines. Z. Natur-
forsch., C: J. Biosci. 1999, 54, 1075–1083.
(6) Hausott, B.; Greger, H.; Marian, B. Flavaglines: a group of
efficient growth inhibitors block cell cycle progression and induce
apoptosis in colorectal cancer cells. Int. J. Cancer 2004, 109, 933–
940.
(7) Lee, S. K.; Cui, B.; Mehta, R. R.; Kinghorn, A. D.; Pezzuto, J. M.
Cytostatic mechanism and antitumor potential of novel 1H-
cyclopenta[b]benzofuran lignans isolated from Aglaia elliptica.
Chem. Biol. Interact. 1998, 115, 215–228.
(25) Sereno, M.; Brunello, A.; Chiappori, A.; Barriuso, J.; Casado, E.;
Belda, C.; de Castro, J.; Feliu, J.; Gonzalez-Baron, M. Cardiac
toxicity: old and new issues in anti-cancer drugs. Clin. Transl.
Oncol. 2008, 10, 35–46.
(26) Sardao, V. A.; Oliveira, P. J.; Holy, J.; Oliveira, C. R.; Wallace, K.
B. Morphological alterations induced by doxorubicin on H9c2
myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell.
Biol. Toxicol. 2009, 25, 227–243.
(27) Degterev, A.; Huang, Z.; Boyce, M.; Li, Y.; Jagtap, P.; Mizushima,
N.; Cuny, G. D.; Mitchison, T. J.; Moskowitz, M. A.; Yuan, J.
Chemical inhibitor of nonapoptotic cell death with therapeutic
potential for ischemic brain injury. Nat. Chem. Biol. 2005, 1, 112–
119.
(8) Ohse, T.; Ohba, S.; Yamamoto, T.; Koyano, T.; Umezawa, K.
Cyclopentabenzofuran lignan protein synthesis inhibitors from
Aglaia odorata. J. Nat. Prod. 1996, 59, 650–652.
(9) Cui, B.; Chai, H.; Santisuk, T.; Reutrakul, V.; Farnsworth, N. R.;
Pezzuto, J. M.; Kinghorn, A. D. Novel cytotoxic 1H-cyclopenta-
[b]benzofuran lignans from Aglaia elliptica. Tetrahedron 1997, 53,
17625–17632.
(28) Seglen, P. O.; Gordon, P. B. 3-Methyladenine: specific inhibitor of
autophagic/lysosomal protein degradation in isolated rat hepato-
cytes. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 1889–1892.
(29) Richardson, P. G.; Mitsiades, C.; Hideshima, T.; Anderson, K. C.
Proteasome inhibition in the treatment of cancer. Cell Cycle 2005,
4, 290–296.
(30) Anderson, P.; Kedersha, N. Stress granules: the Tao of RNA
(10) Kim, S.; Hwang, B. Y.; Su, B. N.; Chai, H.; Mi, Q.; Kinghorn, A.
D.; Wild, R.; Swanson, S. M. Silvestrol, a potential anticancer
rocaglate derivative from Aglaia foveolata, induces apoptosis in
LNCaP cells through the mitochondrial/apoptosome pathway
without activation of executioner caspase-3 or -7. Anticancer Res.
2007, 27, 2175–2183.
(11) Mi, Q.; Su, B. N.; Chai, H.; Cordell, G. A.; Farnsworth, N. R.;
Kinghorn, A. D.; Swanson, S. M. Rocaglaol induces apoptosis and
cell cycle arrest in LNCaP cells. Anticancer Res. 2006, 26, 947–952.
(12) Wang, S. K.; Duh, C. Y. Cytotoxic cyclopenta[b]benzofuran
derivatives from the stem bark of Aglaia formosana. Planta Med.
2001, 67, 555–557.
(13) Wu, T. S.; Liou, M. J.; Kuoh, C. S.; Teng, C. M.; Nagao, T.; Lee, K.
H. Cytotoxic and antiplatelet aggregation principles from Aglaia
elliptifolia. J. Nat. Prod. 1997, 60, 606–608.
(14) Zhu, J. Y.; Lavrik, I. N.; Mahlknecht, U.; Giaisi, M.; Proksch, P.;
Krammer, P. H.; Li-Weber, M. The traditional Chinese herbal
compound rocaglamide preferentially induces apoptosis in leuke-
mia cells by modulation of mitogen-activated protein kinase
activities. Int. J. Cancer 2007, 121, 1839–1846.
(15) Su, B. N.; Chai, H.; Mi, Q.; Riswan, S.; Kardono, L. B.; Afriastini,
J. J.; Santarsiero, B. D.; Mesecar, A. D.; Farnsworth, N. R.;
Cordell, G. A.; Swanson, S. M.; Kinghorn, A. D. Activity-guided
isolation of cytotoxic constituents from the bark of Aglaia crassi-
nervia collected in Indonesia. Bioorg. Med. Chem. 2006, 14, 960–
972.
(16) Mi, Q.; Kim, S.; Hwang, B. Y.; Su, B. N.; Chai, H.; Arbieva, Z. H.;
Kinghorn, A. D.; Swanson, S. M. Silvestrol regulates G2/M
checkpoint genes independent of p53 activity. Anticancer Res.
2006, 26, 3349–3356.
(17) Dobler, M. R.; Bruce, I.; Cederbaum, F.; Cooke, N. G.; Diorazio,
L. J.; Hall, R. G.; Irving, E. Total synthesis of (()-rocaglamide and
some aryl analogues. Tetrahedron Lett. 2001, 42, 8281–8284.
(18) Alexander, M. D.; Burkart, M. D.; Leonard, M. S.; Portonovo, P.;
Liang, B.; Ding, X.; Joullie, M. M.; Gulledge, B. M.; Aggen, J. B.;
Chamberlin, A. R.; Sandler, J.; Fenical, W.; Cui, J.; Gharpure, S.
J.; Polosukhin, A.; Zhang, H. R.; Evans, P. A.; Richardson, A. D.;
Harper, M. K.; Ireland, C. M.; Vong, B. G.; Brady, T. P.;
Theodorakis, E. A.; La Clair, J. J. A central strategy for converting
natural products into fluorescent probes. ChemBioChem 2006, 7,
409–416.
triage. Trends Biochem. Sci. 2008, 33, 141–150.
(31) Donze, O.; Jagus, R.; Koromilas, A. E.; Hershey, J. W.; Sonenberg,
N. Abrogation of translation initiation factor eIF-2 phosphoryla-
tion causes malignant transformation of NIH 3T3 cells. EMBO J.
1995, 14, 3828–3834.
(32) Baguet, A.; Degot, S.; Cougot, N.; Bertrand, E.; Chenard, M. P.;
Wendling, C.; Kessler, P.; Le Hir, H.; Rio, M. C.; Tomasetto, C.
The exon-junction-complex-component metastatic lymph node 51
functions in stress-granule assembly. J. Cell Sci. 2007, 120, 2774–
2784.
(33) Mazroui, R.; Huot, M. E.; Tremblay, S.; Filion, C.; Labelle, Y.;
Khandjian, E. W. Trapping of messenger RNA by fragile X mental
retardation protein into cytoplasmic granules induces translation
repression. Hum. Mol. Genet. 2002, 11, 3007–3017.
(34) Bordeleau, M. E.; Robert, F.; Gerard, B.; Lindqvist, L.; Chen, S.
M.; Wendel, H. G.; Brem, B.; Greger, H.; Lowe, S. W.; Porco, J. A.,
Jr.; Pelletier, J. Therapeutic suppression of translation initiation
modulates chemosensitivity in a mouse lymphoma model. J. Clin.
Invest. 2008, 118, 2651–2660.
(35) Broker, L. E.; Kruyt, F. A.; Giaccone, G. Cell death independent of
caspases: a review. Clin. Cancer Res. 2005, 11, 3155–3162.
(36) Modjtahedi, N.; Giordanetto, F.; Madeo, F.; Kroemer, G. Apop-
tosis-inducing factor: vital and lethal. Trends Cell. Biol. 2006, 16,
264–272.
(37) Nakagawa, T.; Zhu, H.; Morishima, N.; Li, E.; Xu, J.; Yankner, B.
A.; Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific
apoptosis and cytotoxicity by amyloid-β. Nature 2000, 403, 98–103.
(38) Sanges, D.; Comitato, A.; Tammaro, R.; Marigo, V. Apoptosis in
retinal degeneration involves cross-talk between apoptosis-indu-
cing factor (AIF) and caspase-12 and is blocked by calpain
inhibitors. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 17366–17371.
(39) Sanges, D.; Marigo, V. Cross-talkbetween two apoptoticpathways
activated by endoplasmic reticulum stress: differential contribution
of caspase-12 and AIF. Apoptosis 2006, 11, 1629–1641.
(40) Smukste, I.; Bhalala, O.; Persico, M.; Stockwell, B. R. Using small
molecules to overcome drug resistance induced by a viral oncogene.
Cancer Cell 2006, 9, 133–146.
(41) Kim, R. Recent advances in understanding the cell death pathways
activated by anticancer therapy. Cancer 2005, 103, 1551–1560.
(42) Ricci, M. S.; Zong, W. X. Chemotherapeutic approaches for
targeting cell death pathways. Oncologist 2006, 11, 342–357.
(43) Degterev, A.; Hitomi, J.; Germscheid, M.; Ch’en, I. L.; Korkina,
O.; Teng, X.; Abbott, D.; Cuny, G. D.; Yuan, C.; Wagner, G.;
Hedrick, S. M.; Gerber, S. A.; Lugovskoy, A.; Yuan, J. Identifica-
tion of RIP1 kinase as a specific cellular target of necrostatins. Nat.
Chem. Biol. 2008, 4, 313–321.
(19) Gerard, B.; Jones Ii, G.; Porco, J. A., Jr. A biomimetic approach to
the rocaglamides employing photogeneration of oxidopyryliums
derived from 3-hydroxyflavones. J. Am. Chem. Soc. 2004, 126,
13620–13621.
(20) Beer, P. D.; Cadman, J.; Lloris, J. M.; Martinez-Manez, R.; Soto,
J.; Pardo, T.; Dolores Marcos, M. Anion interaction with ferro-
cene-functionalized cyclic and open-chain polyaza and aza-oxa
cycloalkanes. J. Chem. Soc., Dalton Trans. 2000, 1805–1812.
(44) Han, W.; Li, L.; Qiu, S.; Lu, Q.; Pan, Q.; Gu, Y.; Luo, J.; Hu, X.
Shikonin circumvents cancer drug resistance by induction of a
necroptotic death. Mol. Cancer Ther. 2007, 6, 1641–1649.