500
H. S. Lee et al. / Tetrahedron Letters 53 (2012) 497–501
2.0 mmol) in DMF (2.0 mL) was stirred at room temperature for 5 h. After
the usual aqueous extractive workup and column chromatographic
purification process (hexanes/ether, 1:2) compound 3a was obtained as a
Although the yields were moderate in some entries (entries 1 and
4), we could prepare variously functionalized benzoazepine
derivatives.
white solid, 293 mg (80%).
A solution of 3a (292 mg, 0.8 mmol), benzyl
bromide (205 mg, 1.2 mmol), and K2CO3 (221 mg, 1.6 mmol) in DMF (2.0 mL)
was stirred at room temperature for 5 h. After the usual aqueous extractive
workup and column chromatographic purification process (hexanes/ether, 1:2)
In summary, a palladium-catalyzed intramolecular arylation at
the C-6 position of the uracil moiety was examined. Morita–Bay-
lis–Hillman adducts bearing an uracil moiety at the primary posi-
tion provided an efficient way to a novel benzo[c]pyrimido[1,6-
a]azepine scaffold. In addition, various functionalizations of the
synthesized benzoazepine derivative were successfully carried
out. Further studies on the biological activities are underway and
the results will be published in due course.
compound 4a was obtained as colorless oil, 343 mg (94%).
A mixture of
compound 4a (228 mg, 0.5 mmol), Pd(OAc)2 (11 mg, 10 mol %), TBAB (161 mg,
0.5 mmol), and KOAc (147 mg, 1.5 mmol) in DMF (2.0 mL) was heated to
120 °C for 30 min. After the usual aqueous extractive workup and column
chromatographic purification process (hexanes/ether, 1:1) compound 5a was
obtained as a white solid, 146 mg (78%). Other compounds were synthesized
similarly, and the selected spectroscopic data of 4a and 5a–k are as follows.
Compound 4a: 94%; colorless oil; IR (film) 1710, 1663, 1449, 1230 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d 3.77 (s, 3H), 4.68 (s, 2H), 5.02 (s, 2H), 5.60 (d,
J = 8.1 Hz, 1H), 7.05 (d, J = 8.1 Hz, 1H), 7.15–7.30 (m, 6H), 7.42 (d, J = 8.1 Hz,
2H), 7.58 (d, J = 7.2 Hz, 1H), 7.93 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 44.05,
45.00, 52.44, 101.24, 123.17, 127.32, 127.36, 127.82, 128.13, 128.96, 129.56,
130.39, 132.69, 134.54, 136.66, 141.68, 143.98, 151.05, 162.61, 166.24; ESIMS
m/z 455 (M++H), 457 (M++H+2). Anal. Calcd. For C22H19BrN2O4: C, 58.04; H,
4.21; N, 6.15. Found: C, 58.33; H, 4.42; N, 6.08.
Acknowledgments
This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (2011-0002570).
Spectroscopic data were obtained from the Korea Basic Science
Institute, Gwangju branch.
Compound 5a: 78%; white solid, mp 118–120 °C; IR (KBr) 1718, 1658, 1460,
1433 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.45 (d, J = 13.5 Hz, 1H), 3.89 (s, 3H),
;
5.08 (d, J = 13.5 Hz, 1H), 5.24 (d, J = 13.5 Hz, 1H), 5.79 (s, 1H), 6.01 (d,
J = 13.5 Hz, 1H), 7.23–7.34 (m, 3H), 7.45 (d, J = 7.5 Hz, 1H), 7.50–7.62 (m, 4H),
7.69 (d, J = 7.5 Hz, 1H), 7.93 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 40.20, 44.62,
52.66, 102.64, 127.59, 128.30, 129.29, 129.74, 130.36, 130.77, 130.87, 132.26,
133.38, 134.39, 136.73, 142.00, 150.52, 152.20, 161.97, 165.22; ESIMS m/z 375
(M++H). Anal. Calcd. For C22H18N2O4: C, 70.58; H, 4.85; N, 7.48. Found: C, 70.37;
H, 4.93; N, 7.37.
References and notes
1. For our recent synthesis of indole-containing polycyclic compounds from
Morita–Baylis–Hillman adducts, see: (a) Lee, H. S.; Kim, S. H.; Kim, T. H.; Kim, J.
N. Tetrahedron Lett. 2008, 49, 1773–1776; (b) Lee, H. S.; Kim, S. H.; Gowrisankar,
S.; Kim, J. N. Tetrahedron 2008, 64, 7183–7190.
Compound 5b: 83%; white solid, mp 100–102 °C; IR (KBr) 1718, 1697, 1643,
2. For the synthesis of various benzoazepine derivatives, see: (a) Dumoulin, D.;
Lebrun, S.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron: Asymmetry
2009, 20, 1903–1911; (b) Ozeki, M.; Muroyama, A.; Kajimoto, T.; Watanabe, T.;
Wakabayashi, K.; Node, M. Synlett 2009, 1781–1784; (c) Fantauzzi, S.; Gallo, E.;
Caselli, A.; Piangiolino, C.; Ragaini, F.; Re, N.; Cenini, S. Chem. Eur. J. 2009, 15,
1241–1251; (d) Novak, T.; Mucsi, Z.; Balazs, B.; Keresztely, L.; Blasko, G.;
Nyerges, M. Synlett 2010, 2411–2414; (e) Gowrisankar, S.; Lee, H. S.; Lee, K. Y.;
Lee, J.-E.; Kim, J. N. Tetrahedron Lett. 2007, 48, 8619–8622; (f) Gowrisankar, S.;
Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1112–1116; (g) Sajitz, M.;
Frohlich, R.; Salorinne, K.; Wurthwein, E.-U. Synthesis 2006, 2183–2190.
3. (a) For the similar poly-fused compounds showing a hepatitis C virus NS5B
polymerase inhibitory activity, see: Hudyma, T. W.; Zheng, X.; He, F.; Ding, M.;
Bergstrom, C. P.; Hewawasam, P.; Martin, S. W.; Gentles, R. G. WO 2007092000,
2007; Chem. Abstr. 2007, 147, 277782.; (b) Meanwell, N. A.; Gentles, R. G.; Ding,
M.; Bender, J. A.; Kadow, J. F.; Hewawasam, P.; Hudyma, T. W.; Zheng, X. US
2007184024, 2007; Chem. Abstr. 2007, 147, 257667.; (c) Habermann, J.; Capito,
E.; del Rosario Rico Ferreira, M.; Koch, U.; Narjes, F. Bioorg. Med. Chem. Lett.
2009, 19, 633–638; (d) Ding, M.; He, F.; Poss, M. A.; Rigat, K. L.; Wang, Y.-K.;
Roberts, S. B.; Qiu, D.; Fridell, R. A.; Gao, M.; Gentles, R. G. Org. Biomol. Chem.
2011, 9, 6654–6662. and further references cited therein.
4. For the palladium-catalyzed synthesis of 5-aryluracil derivatives with
arylboron reagents, see: (a) Kalachova, L.; Pohl, R.; Hocek, M. Synthesis 2009,
105–112; (b) Western, E. C.; Daft, J. R.; Johnson, E. M., II; Gannett, P. M.;
Shaughnessy, K. H. J. Org. Chem. 2003, 68, 6767–6774; (c) Crisp, G. T.; Macolino,
V. Synth. Commun. 1990, 20, 413–422; (d) Pomeisl, K.; Holy, A.; Pohl, R.; Horska,
K. Tetrahedron 2009, 65, 8486–8492; (e) Pomeisl, K.; Holy, A.; Pohl, R.
Tetrahedron Lett. 2007, 48, 3065–3067; (f) Coelho, A.; Sotelo, E. J. Comb. Chem.
2005, 7, 526–529; For recent 6-arylation of uracil derivatives, see: (g) Shih, Y.-
C.; Chien, T.-C. Tetrahedron 2011, 67, 3915–3923.
5. For the palladium-catalyzed synthesis of 5-aryluracil derivatives with
arylstannane reagents, see: (a) Gutierrez, A. J.; Terhorst, T. J.; Matteucci, M.
D.; Froehler, B. C. J. Am. Chem. Soc. 1994, 116, 5540–5544; (b) Sadler, J. M.;
Ojewoye, O.; Seley-Radtke, K. L. Nucleic Acids Symp. Ser. 2008, 52, 571–572; (c)
Wigerinck, P.; Pannecouque, C.; Snoeck, R.; De Clercq, E.; Herdewijn, P. J. Med.
Chem. 1991, 34, 2383–2389; (d) Herdewijn, P.; Kerremans, L.; Wigerinck, P.;
Vandendriessche, F.; Aerschot, A. V. Tetrahedron Lett. 1991, 32, 4397–4400.
6. For the palladium-catalyzed intermolecular arylation of uracil derivatives, see:
(a) Cernova, M.; Pohl, R.; Hocek, M. Eur. J. Org. Chem. 2009, 3698–3701; (b)
Cernova, M.; Cerna, I.; Pohl, R.; Hocek, M. J. Org. Chem. 2011, 76, 5309–5319.
7. For the palladium-catalyzed intramolecular arylation of uracil derivatives, see:
(a) Majumdar, K. C.; Sinha, B.; Maji, P. K.; Chattopadhyay, S. K. Tetrahedron
2009, 65, 2751–2756; (b) Majumdar, K. C.; Debnath, P.; Taher, A.; Pal, A. K. Can.
J. Chem. 2008, 86, 325–332.
1459, 1439 cmÀ1 1H NMR (CDCl3, 300 MHz) d 1.80 (s, 3H), 3.37 (d, J = 14.4 Hz,
;
1H), 3.88 (s, 3H), 5.13 (d, J = 13.5 Hz, 1H), 5.27 (d, J = 13.5 Hz, 1H), 6.02 (d,
J = 14.4 Hz, 1H), 7.23–7.34 (m, 3H), 7.44–7.58 (m, 6H), 7.92 (s, 1H); 13C NMR
(CDCl3, 75 MHz) d 14.24, 40.18, 44.87, 52.55, 109.58, 127.50, 128.24, 128.66,
129.39, 129.66, 130.00, 131.89, 132.12, 132.80, 135.65, 136.90, 141.82, 146.69,
149.91, 163.34, 165.28; ESIMS m/z 389 (M++H). Anal. Calcd. For C23H20N2O4: C,
71.12; H, 5.19; N, 7.21. Found: C, 71.34; H, 5.02; N, 7.12.
Compound 5c: 62%; white solid, mp 146–148 °C; IR (KBr) 1719, 1660, 1275,
1262 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.42 (d, J = 14.1 Hz, 1H), 3.89 (s, 3H),
;
5.10 (d, J = 13.5 Hz, 1H), 5.28 (d, J = 13.5 Hz, 1H), 6.02 (d, J = 14.1 Hz, 1H), 7.25–
7.35 (m, 3H), 7.48–7.62 (m, 5H), 7.69–7.74 (m, 1H), 7.93 (s, 1H); 13C NMR
(CDCl3, 75 MHz) d 40.20, 45.19, 52.66, 127.02 (d, JC–F = 3.5 Hz), 127.88, 128.38,
129.48, 129.56, 130.71, 130.94, 131.91 (d, JC–F = 7.5 Hz), 132.17, 135.17, 136.17
(d, JC–F = 29.3 Hz), 136.10, 137.59 (d, JC–F = 223.2 Hz), 141.92, 148.52, 156.86 (d,
JC–F = 26.3 Hz), 165.11; ESIMS m/z 393 (M++H). Anal. Calcd. For C22H17FN2O4: C,
67.34; H, 4.37; N, 7.14. Found: C, 67.55; H, 4.39; N, 7.02.
Compound 5d: 79%; white solid, mp 128–130 °C; IR (KBr) 1720, 1697, 1645,
1454, 1438 cmÀ1 1H NMR (CDCl3, 300 MHz) d 0.98 (t, J = 7.2 Hz, 3H), 2.03–2.39
;
(m, 2H), 3.35 (d, J = 14.1 Hz, 1H), 3.87 (s, 3H), 5.10 (d, J = 13.5 Hz, 1H), 5.29 (d,
J = 13.5 Hz, 1H), 6.01 (d, J = 14.1 Hz, 1H), 7.23–7.34 (m, 3H), 7.44–7.58 (m, 6H),
7.93 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 13.75, 21.20, 40.22, 44.74, 52.55,
115.58, 127.47, 128.26, 128.72, 129.38, 129.55, 130.00, 130.82, 132.28, 133.00,
135.65, 136.99, 141.73, 146.83, 149.88, 162.79, 165.30; ESIMS m/z 403 (M++H).
Anal. Calcd. For C24H22N2O4: C, 71.63; H, 5.51; N, 6.96. Found: C, 71.38; H, 5.82;
N, 6.93.
Compound 5e: 78%; white solid, mp 164–166 °C; IR (KBr) 1718, 1656, 1450,
1262 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.51 (d, J = 14.4 Hz, 1H), 3.91 (s, 3H),
;
5.12 (d, J = 13.8 Hz, 1H), 5.29 (d, J = 13.8 Hz, 1H), 5.81 (s, 1H), 6.05 (d,
J = 14.4 Hz, 1H), 7.26–7.37 (m, 3H), 7.45 (d, J = 8.4 Hz, 1H), 7.50–7.62 (m, 4H),
7.89 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 8.04 (s, 1H), 8.29 (d, J = 7.5 Hz,
1H); 13C NMR (CDCl3, 75 MHz) d 40.70, 44.62, 52.66, 105.52, 126.19, 126.60,
127.62, 127.87, 128.33 (2C), 129.41, 130.64, 131.03, 131.27, 133.05, 133.24,
133.96, 136.72, 142.03, 148.47, 150.75, 161.55, 165.14 (one carbon was
overlapped); ESIMS m/z 425 (M++H). Anal. Calcd. For C26H20N2O4: C, 73.57; H,
4.75; N, 6.60. Found: C, 73.81; H, 4.78; N, 6.43.
Compound 5f: 59%; white solid, mp 198–200 °C; IR (KBr) 1714, 1656, 1518,
1454, 1440 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.45 (d, J = 14.4 Hz, 1H), 3.88 (s,
;
3H), 3.95 (s, 3H), 3.96 (s, 3H), 5.08 (d, J = 13.8 Hz, 1H), 5.24 (d, J = 13.8 Hz, 1H),
5.77 (s, 1H), 6.01 (d, J = 14.4 Hz, 1H), 6.88 (s, 1H), 7.13 (s, 1H), 7.21–7.35 (m,
3H), 7.54 (d, J = 8.1 Hz, 2H), 7.86 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 40.45,
44.58, 52.54, 56.13, 56.20, 101.45, 111.95, 112.65, 126.73, 127.53, 128.05,
128.28, 129.20, 130.49, 136.78, 141.94, 150.38, 150.55, 150.94, 152.02, 162.13,
165.31; ESIMS m/z 435 (M++H). Anal. Calcd. For C24H22N2O6: C, 66.35; H, 5.10;
N, 6.45. Found: C, 66.41; H, 5.37; N, 6.23.
8. Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6228–6233. and
further references cited therein.
Compound 5g: 54%; white solid, mp 208–210 °C; IR (KBr) 1726, 1669, 1528,
9. The reactions of 3a under the following conditions were all ineffective: (i)
Pd(OAc)2, TBAB, K2CO3, DMF, 120 °C;1 (ii) Pd(OAc)2, PPh3, CuI, Cs2CO3, DMF,
150 °C;6 (iii) Pd(OAc)2, TBAB, KOAc, DMF, 120 °C;7 (iv) Pd(OAc)2, TBAC, PivOH,
K2CO3, DMF, 130 °C;8 (v) Pd(OAc)2, PPh3, PivOH, K2CO3, DMF, 130 °C.8
10. For the difficulty in the Pd-catalyzed C-arylation of free (N–H)-containing
heterocycles including free (N–H)-indoles and pyrroles, see: Wang, X.; Gribkov,
D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476–1479. In addition, the failure of C-
arylation of uracil derivatives was also noted in Ref. 6.
1465, 1434 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.37 (d, J = 14.4 Hz, 1H), 3.91 (s,
;
3H), 5.09 (d, J = 13.5 Hz, 1H), 5.29 (d, J = 13.5 Hz, 1H), 6.08 (d, J = 14.4 Hz, 1H),
7.30–7.37 (m, 3H), 7.47–7.70 (m, 6H), 8.01 (s, 1H); 13C NMR (CDCl3, 75 MHz) d
40.66, 45.79, 52.86, 127.97, 128.23, 128.54, 128.91, 129.89, 130.38, 130.46,
130.81, 132.41, 132.80, 135.20, 135.45, 141.63, 147.42, 148.23, 154.98, 164.65;
ESIMS m/z 420 (M++H). Anal. Calcd. For C22H17N3O6: C, 63.01; H, 4.09; N, 10.02.
Found: C, 63.33; H, 4.29; N, 9.89.
Compound 5h: 80%; white solid, mp 218–220 °C; IR (KBr) 1718, 1649, 1579,
11. Typical procedure for the synthesis of 4a and 5a: A solution of MBH acetate (1a,
313 mg, 1.0 mmol), uracil (2a, 168 mg, 1.5 mmol), and K2CO3 (276 mg,
1447, 1430 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.40 (d, J = 14.4 Hz, 1H), 3.88 (s,
;