Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
9
(12) Guerre. M.; Taplan. C.; Nicolaÿ.R.; Winne. J. M.; Du Prez. F. E.
degradation of the chemical and physical properties. Due to the
highly effective and efficient synthesis, and tuneable monomers,
POE vitrimes afford networks with a range of tuneable properties.
Fluorinated vitrimer elastomers with a dual temperature response. J.
Am. Chem. Soc., 2018, 140, 13272–13284
(13) Fortman, D.; Brutman, J.; Cramer, C.; Hillmyer, M. Mechanically
activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem.
Soc. 2015, 137, 14019-14012.
(14) Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shape‐
memory polyurethane with intrinsic plasticity enabled by
transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55, 1 – 6.
(15) Chen, X.; Li, L; Jin, K.; Torkelson, J. Reprocessable
polyhydroxyurethane networks exhibiting full property recovery and
concurrent associative and dissociative dynamic chemistry via
transcarbamoylation and reversible cyclic carbonate aminolysis.
Polym. Chem. 2017, 8, 6349-6355.
(16) Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-
catalyzed transesterification for healing and assembling of
thermosets. J. Am. Chem. Soc. 2012, 134, 7664-7667.
(17) Chao, A.; Negulescu, I.; Zhang, D. Dynamic covalent polymer
networks based on degenerative imine bond exchange: tuning the
malleability and self-healing properties by solvent. Macromolecules
2016, 49, 6277-6284.
(18) Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W.
Heat ‐ or Water ‐ Driven Malleability in a Highly Recyclable
Covalent Network Polymer. Adv. Mater. 2014, 26, 3938-3942.
(19) Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.;
Zhang, W. Repairable woven carbon fiber composites with full
recyclability enabled by malleable polyimine networks. Adv.
Mater.2016, 49, 6277-6284.
(20) Rottger, M.; Domenech T.; van der Weegen, R.; Breuillac A.;
Nicolay, R.; Leibler, L. High-performance vitrimers from
commodity thermoplastics through dioxaborolane metathesis.
Science 2017, 356, 62-65.
(21) Ogedn, W; Guan, Z. Recyclable, strong, and highly malleable
thermosets based on boroxine networks. J. Am. Chem. Soc. 2018, 140,
6217-6220.
(22) Cromwell, R.; Chung, J.; Guan, Z. Malleable and self-healing
covalent polymer networks through tunable dynamic boronic ester
bonds. J. Am. Chem. Soc. 2015, 137, 6492-6495.
(23) Zheng, P.; McCarthy, T. J. A surprise from 1954: siloxane
equilibration is a simple, robust, and obvious polymer self-healing
mechanism. J. Am. Chem. Soc.2012, 134, 2024-2027.
(24) Nishimura, Y.; Chung, J.; Muradyan, H.; Guan, Z. Silyl ether as a
robust and thermally stable dynamic covalent motif for malleable
polymer design. J. Am. Chem. Soc.2017, 139, 14881–14884.
(25) Stukenbroeker, T.; Wang, W. Winne, J. Du Prez, F.; Nicolay, R.;
Leibler, L. Polydimethylsiloxane quenchable vitrimers. Polym.
Chem. 2017, 8, 6590–6359.
(26) Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.;
Sheran, K.; Wudl, F. A. A thermally re-mendable cross-linked
polymeric material. Science 2002, 295, 1698−1702.
(27) Zhang, G.; Zhao, Q.; Yang, L.; Zou, W.; Xi, X.; Xie, T. Exploring
dynamic equilibrium of Diels–Alder reaction for solid state plasticity
in remoldable shape memory polymer network. ACS Macro Lett.
2016, 5 (7), 805-808.
ASSOCIATED CONTENT
Supporting Information
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The Supporting Information is available free of charge on the ACS
Publications website.
Experimental details and characterization data
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by National Natural Science Foundation
of China (51673016) and Grant No. 2194083 of Beijing Natural
Science Foundation. B.A.H. acknowledges support from the
Molecular Foundry, which is supported by the Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.
REFERENCES
(1) Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-like
malleable materials from permanent organic networks. Science 2011,
334, 965-968.
(2) Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-
catalyzed transesterification for healing and assembling of
thermosets. J. Am. Chem. Soc. 2012, 134, 7664-7667.
(3) Garcia, F.; Smulders, M. M. Dynamic covalent polymers. J. Polym.
Sci. A: Polym. Chem. 2016, 54 (22), 3551-3577.
(4) Bowman, C. N.; Kloxin, C. Covalent adaptable networks: reversible
bond structures incorporated in polymer networks. J. Angew. Chem.
Int. Ed. 2012, 51, 4272−4.
(5) Brutman, J.; Delgado, A.; Hillmyer, M. Polylactide vitrimers. ACS
Macro Lett. 2014, 3, 607-610.
(6) Altuna, F. I.; Pettarin, V.; Williams, R. J. J. Self-healable polymer
networks based on the cross-linking of epoxidised soybean oil by an
aqueous citric acid solution. Green Chem. 2013, 15, 3360-3366.
(7) Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y.
Mouldable liquid-crystalline elastomer actuators with exchangeable
covalent bonds. Nat. Mater. 2014, 13, 36-41.
(28) Amamoto, Y.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Adv.
Mater. 2012, 24, 3975−3980.
(29) Zhang, Z.; Rong. M.; Zhang. M. Self‐healing of covalently cross‐
linked polymers by reshuffling thiuram disulfide moieties in air
under visible light. Adv. Funct. Mater. 2018, 24, 1706050.
(30) Liu. W.; Zhang. C.; Zhang. H.; Zhao. N.; Yu. Z.; Xu. J. Oxime-based
and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc.
2017, 139, 8678-8684.
(31) Christensen, P. R.; Scheuermann, A. M.; Loeffler, K. E.; Helms, B.
A. Closed-loop recycling of plastics enabled by dynamic covalent
diketoenamine bonds. Nat. Chem. 2019, 11, 442–448.
(32) Song, H.; Fang, Z.; Jin, B.; Pan, P.; Zhao, Q.; Xie, T. Synergetic
chemical and physical programming for reversible shape memory
effect in a dynamic covalent network with two crystalline phases.
ACS Macro Lett. 2019, 8, 682-686.
(8) Zhou, Y.; Goossens, J. P.; Sijbesma, R.; Heuts, J. A. Poly (butylene
terephthalate)/glycerol-based
vitrimers
via
solid-state
polymerization. Macromolecules 2017, 50, 6742-6751.
(9) Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J. A Catalyst-
Free Epoxy Vitrimer System Based on Multifunctional
Hyperbranched Polymer. Macromolecules 2018, 51, 6789-6799.
(10) Ube, T.; Kawasaki, K.; Ikeda, T. Photomobile liquid‐crystalline
elastomers with rearrangeable networks. Adv. Mater. 2016, 28, 8212-
8217.
(11) Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, R.; Winne, J. M.; Du
Prez, F. E. Vinylogous urethane vitrimers. Adv. Func. Mater. 2015,
25, 2451-2457.
ACS Paragon Plus Environment