ACS Medicinal Chemistry Letters
Letter
Rigamonti, D.; Cattaneo, E. ST14A cells have properties of a medium-
size spiny neuron. Exp. Neurol. 2001, 167, 215−226.
Notes
The authors declare no competing financial interest.
(16) Kazantsev, A.; Preisinger, E.; Dranovsky, A.; Goldgaber, D.;
Housman, D. Insoluble detergent-resistant aggregates form between
pathological and nonpathological lengths of polyglutamine in
mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11404−11409.
(17) Apostol, B. L.; Kazantsev, A.; Raffioni, S.; Illes, K.; Pallos, J.;
Bodai, L.; Slepko, N.; Bear, J. E.; Gertler, F. B.; Hersch, S.; Housman,
D. E.; Marsh, J. L.; Thompson, L. M. A cell-based assay for aggregation
inhibitors as therapeutics of polyglutamine-repeat disease and
validation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
5950−5955.
ABBREVIATIONS
■
CNS, central nervous system; HD, Huntington’s disease;
HDAC, histone deacetylase; Parkinson’s disease, PD; PolyQ,
polyglutamine; SIRT2, sirtuin-2
REFERENCES
■
(1) Raghavan, A.; Shah, Z. A. Sirtuins in neurodegenerative diseases:
a biological-chemical perspective. Neurodegener. Dis 2012, 9, 1−10.
(2) Schemies, J.; Uciechowska, U.; Sippl, W.; Jung, M. NAD(+)-
dependent histone deacetylases (sirtuins) as novel therapeutic targets.
Med. Res. Rev. 2010, 30, 861−889.
(3) North, B. J.; Marshall, B. L.; Borra, M. T.; Denu, J. M.; Verdin, E.
The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin
deacetylase. Mol. Cell 2003, 11, 437−444.
(4) Taylor, D. M.; Maxwell, M. M.; Luthi-Carter, R.; Kazantsev, A. G.
Biological and potential therapeutic roles of sirtuin deacetylases. Cell.
Mol. Life Sci. 2008, 65, 4000−4018.
(5) Outeiro, T. F.; Kontopoulos, E.; Altmann, S. M.; Kufareva, I.;
Strathearn, K. E.; Amore, A. M.; Volk, C. B.; Maxwell, M. M.; Rochet,
J. C.; McLean, P. J.; Young, A. B.; Abagyan, R.; Feany, M. B.; Hyman,
B. T.; Kazantsev, A. G. Sirtuin 2 inhibitors rescue alpha-synuclein-
mediated toxicity in models of Parkinson’s disease. Science 2007, 317,
516−519.
(6) Luthi-Carter, R.; Taylor, D. M.; Pallos, J.; Lambert, E.; Amore, A.;
Parker, A.; Moffitt, H.; Smith, D. L.; Runne, H.; Gokce, O.; Kuhn, A.;
Xiang, Z.; Maxwell, M. M.; Reeves, S. A.; Bates, G. P.; Neri, C.;
Thompson, L. M.; Marsh, J. L.; Kazantsev, A. G. SIRT2 inhibition
achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl.
Acad. Sci. U.S.A. 2010, 107, 7927−7932.
(7) Taylor, D. M.; Balabadra, U.; Xiang, Z.; Woodman, B.; Meade, S.;
Amore, A.; Maxwell, M. M.; Reeves, S.; Bates, G. P.; Luthi-Carter, R.;
Lowden, P. A.; Kazantsev, A. G. A brain-permeable small molecule
reduces neuronal cholesterol by inhibiting activity of sirtuin 2
deacetylase. ACS Chem. Biol. 2011, 6, 540−546.
(8) Chopra, V.; Quinti, L.; Kim, J.; Vollor, L.; Narayanan, K. L.;
Edgerly, C.; Cipicchio, P. M.; Lauver, M. A.; Choi, S. H.; Silverman, R.
B.; Ferrante, R. J.; Hersch, S.; Kazantsev, A. G. The sirtuin 2 inhibitor
AK-7 is neuroprotective in Huntington’s disease mouse models. Cell
Rep. 2012, 2, 1492−1497.
(9) Khanfar, M. A.; Quinti, L.; Wang, H.; Choi, S. H.; Kazantsev, A.
G.; Silverman, R. B. Development and characterization of 3-
(benzylsulfonamido)benzamides as potent and selective SIRT2
inhibitors. Eur. J. Med. Chem. 2014, 76, 414−426.
(10) Khanfar, M. A.; AbuKhader, M. M.; Alqtaishat, S.; Taha, M. O.
Pharmacophore modeling, homology modeling, and in silico screening
reveal mammalian target of rapamycin inhibitory activities for sotalol,
glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone. J.
Mol. Graphics Model. 2013, 42, 39−49.
(11) Khanfar, M. A.; Taha, M. O. Elaborate ligand-based modeling
coupled with multiple linear regression and k nearest neighbor QSAR
analyses unveiled new nanomolar mTOR inhibitors. J. Chem. Inf.
Model. 2013, 53, 2587−2612.
(12) Neugebauer, R. C.; Uchiechowska, U.; Meier, R.; Hruby, H.;
Valkov, V.; Verdin, E.; Sippl, W.; Jung, M. Structure-activity studies on
splitomicin derivatives as sirtuin inhibitors and computational
prediction of binding mode. J. Med. Chem. 2008, 51, 1203−1213.
(13) Kiviranta, P. H.; Salo, H. S.; Leppanen, J.; Rinne, V. M.;
Kyrylenko, S.; Kuusisto, E.; Suuronen, T.; Salminen, A.; Poso, A.;
Lahtela-Kakkonen, M.; Wallen, E. A. Characterization of the binding
properties of SIRT2 inhibitors with a N-(3-phenylpropenoyl)-glycine
tryptamide backbone. Bioorg. Med. Chem. 2008, 16, 8054−8062.
(14) Shoichet, B. K. Interpreting steep dose-response curves in early
inhibitor discovery. J. Med. Chem. 2006, 49, 7274−7277.
(15) Ehrlich, M. E.; Conti, L.; Toselli, M.; Taglietti, L.; Fiorillo, E.;
Taglietti, V.; Ivkovic, S.; Guinea, B.; Tranberg, A.; Sipione, S.;
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX