Organometallics 2009, 28, 1093–1100
1093
Regioselective Double Cycloplatination of
9,10-Bis(diphenylphosphino)anthracene
Jian Hu and John H. K. Yip*
Department of Chemistry, National UniVersity of Singapore, 3 Science DriVe 3, Singapore, 117543
ReceiVed April 21, 2008
Double cyclometalation of 9,10-bis(diphenylphosphino)anthracene (PAnP) by Pt(L)(OTf)2 (L )
diphosphines, OTf ) CF3SO3) gives rise to the geometrical isomers syn- and anti-[Pt2(L)2(PAnP-H2)](OTf)2
(Pt2). The reaction is regioselective, with the syn-isomer being the kinetic product. The cyclomelation is
reversible, and thermodynamic product distribution is obtained after prolonged standing. The ratio of the
isomers is subject to the influence of solvents and ancillary diphosphines. Protonolysis of the Pt-C leads
to a monocyclometalated intermediate. A mechanistic postulate that invokes a preferential electrophilic
attack of the Pt ions at the C-H bonds of the anthracenyl ring is proposed to explain the regioselectivity.
standing the origin of regioselectivity not only is an important
step toward synthetic application3 of the reaction but also
provides insights into important problems such as C-H bond
and metal-ligand activations.
Introduction
Cyclometalation is a facile and common way to convert a
C-H bond to a metal-carbon bond.1 The reaction begins with
coordination of a metal atom to a ligand (i.e., phosphines and
amines) that has pendent alkyl or aryl groups, followed by
cleavage of a C-H bond in a pendent aryl or alkyl group, and
finally formation of metal-carbon bond and metallacycle. The
mechanisms proposed for the C-H bond activation are elec-
trophilic attack, nucleophilic addition, and σ-bond metathesis.1c
Regioselective cyclometalation could happen to ligands that
have more than one C-H bond that is reactive toward the
incoming metal atom.2 Ryabov1c classified regioselective cy-
clometalation into enforced regioselectivity, which is dictated
by electronic or steric factors, and regulated regioselectivity,
which can be altered by changing reaction conditions. Under-
Double cyclometalation is possible for ligands that have two
donor groups and more than one activated C-H bond.1c,2a-q
The reaction can produce geometrical isomers, and their yields
could be different if the attack of the second metal atom is
regioselective. The origin of regioselectivity in double cyclo-
metalation is an intriguing problem. The first question is whether
the first metal atom directs and activates/deactivates the second
attack. It is related to the mechanism of the C-H bond cleavage
and metal-ligand interactions. Another question concerns
electronic, steric, and solvent effects on the regioselectivity,
which is related to the question of whether the reaction is
kinetically or thermodynamically controlled. So far our under-
standing of regioselectivity of double cyclometalation is rather
limited, despite the fact that it was first observed by Trofimenko
more than 30 years ago.2a Subsequent studies on double
cyclometalation of 1,4-disubstituted benzenes showed that the
para-dimetalation is favored over ortho-dimetalation mainly due
to steric factors.2a-q Notably, Steel reported a systematic inves-
tigation of double cyclopalladation of a series of bis(2-pyridyloxy)-
napthalenes,2c,g showing that the reaction is kinetically con-
trolled, but thermodynamic products could be obtained at high
temperature.
Recently we reported the syntheses and electronic spectros-
copy of the doubly cycloplatinated complexes [Pt2(L)2(PAnP-
H2)](OTf)2 (Pt2) (L ) bis(diphenylphosphino)methane (dppm),
1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphos-
phino)propane (dppp), PAnP ) 9,10-bis(diphenylphosphino)an-
thracene) (Scheme 1).4 Our further study showed that the double
cyclometalation of PAnP by PtII(L)(OTf)2 is very fast, producing
two geometrical isomers, syn- and anti-Pt2. The second cyclo-
platination is found to be regioselective, and the selectivity
depends on solvent and L. Reported in this paper is our effort
* Correspondence author. E-mail: chmyiphk@nus.edu.sg. Fax: 65-
67791691.
(1) (a) Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.
(b) Chatt, J.; Davidson, J. M. J. Chem. Soc. 1965, 843. (c) Ryabov, A. D.
Chem. ReV. 1990, 90, 403. (d) Canty, A. J.; van Koten, G. Acc. Chem. Res.
1995, 28, 406. (e) Newkome, G. R.; Puckett, W. E.; Gupta, V. K.; Kiefer,
G. E. Chem. ReV. 1986, 86, 451. (f) Dehand, J.; Pfeffer, M. Coord. Chem.
ReV. 1976, 18, 327. (g) Newkome, G. R.; Puckett, W. E.; Gupta, V. K.;
Kiefer, G. E. Chem. ReV. 1986, 86, 451. (h) Omae, I. Organometallic
Intramolecular-Coordination Compounds; Elsevier: Amsterdam, 1986. (i)
Bruce, M. I. Angew. Chem., Int. Ed. Engl. 1977, 16, 73.
(2) (a) Trofimenko, S. J. Am. Chem. Soc. 1971, 93, 1808. (b) Trofimenko,
S. Inorg. Chem. 1973, 12, 1215. (c) Hartshorn, C. M.; Steel, P. J.
Organometallics 1998, 17, 3487. (d) Steenwinkel, P.; James, S. L.; Grove,
D. M.; Kooijman, H.; Spek, A. L.; van Koten, G. Organometallics 1997,
16, 513. (e) van der Boom, M. E.; Liou, S.-Y.; Shimon, L. J. W.; Ben-
David, Y.; Milstein, D. Organometallics 1996, 15, 2562. (f) Slater, J. W.;
Lydon, D. P.; Alcock, N. W.; Rourke, J. P. Organometallics 2001, 20, 4418.
(g) O’Keefe, B. J.; Steel, P. J. Organometallics 2003, 22, 1281. (h) Sumby,
C. J.; Steel, P. J. Organometallics 2003, 22, 2358. (i) Philips, I. G.; Steel,
P. G. J. Organomet. Chem. 1991, 410, 247. (j) Frena´ndez, A.; Frena´ndez,
J. J.; Lo´pez-Torres, M.; Sua´rez, A.; Ortigueira, J. M.; Vila, J. M.; Adams,
H. J. Organomet. Chem. 2000, 612, 85. (k) Crespo, M.; Grande, C.; Klein,
A. J. Chem. Soc., Dalton Trans. 1999, 1629. (l) Zucca, A.; Doppiu, A.;
Cinellu, M. A.; Stoccoro, S.; Minghetti, G.; Manassero, M. Organometallics
2002, 21, 783. (m) Vicente, J.; Abad, J. A.; Rink, B.; Hernandez, F. S.;
Arellano, M. C. Organometallics 1997, 16, 5269. (n) Cardenas, D. J.;
Echavarren, A. M.; Ramirez de Arellano, M. C. Organometallics 1999,
18, 3337. (o) Vicente, J.; Saura-Llamas, I.; Cuadrado, J.; Ramirez de
Arellano, M. C. Organometallics 2003, 22, 5513. (p) Chakladar, S.; Paul,
P.; Mukherjee, A. K.; Dutta, S. K.; Nanda, K. K.; Podder, D.; Nag, K.
J. Chem. Soc., Dalton Trans. 1992, 3119. (q) Chakladar, S.; Paul, P.;
Venkatsubramanian, K.; Nag, K. J. Chem. Soc., Dalton Trans. 1991, 2669.
(r) Holland, A. W.; Bergman, R. G. Organometallics 2002, 21, 2149.
(3) (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731.
(b) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 1119. (c) Murai, S.;
Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani,
N. Nature 1993, 366, 529. (d) Hull, K. L.; Sanford, M. S. J. Am. Chem.
Soc. 2007, 129, 11904.
(4) Hu, J.; Lin, R.; Yip, J. H. K.; Wong, K.-Y.; Ma, D.-L.; Vittal, J. J.
Organometallics 2007, 26, 6533.
10.1021/om800356k CCC: $40.75
2009 American Chemical Society
Publication on Web 01/27/2009