In contrast, imidazo[1,2-a]pyridine derivatives as impor-
tant fine chemicals have been found to be key structural
units in many natural products and drugs and exhibited a
wide range of biological activities,11 such as zolpidem,
zolimidine, and alpidem. Thus, the development of an
efficient transformation to form novel imidazo[1,2-
a]pyridine derivatives is a long-standing and challenging
goal of organic chemists. To the best of our knowledge,
there has been no report of a Cu(I)-catalyzed example of
direct arylation of the imidazo[1,2-a]pyridine.
Table 1. Optimization of Reaction Conditions a
yield
(%)c
entry
cat.
ligandb
base
solvent
2-Methylimidazo[1,2-a]pyridine 1a and iodobenzene 2a
were chosen as model substrates to optimize the reaction
conditions. Without any ligand, treatment of 1a with 2a
using Cs2CO3 as the base and CuCl as the copper source in
DMF afforded very poor conversion, yielding only 5% of
3aa (Table 1, entry 1). In the absence of base, reaction fails
completely (entry 2). The desired product 3aa was ob-
tained in 25% yield, when the reaction was carried out in
the presence of CuCl as the catalyst, PPh3 as the ligand,
and Cs2CO3 as the base at 140 °C for 24 h (entry 3). Other
Cu(I) catalysts, such as CuBr, CuI, CuCN, were examined
at 140 °C for 24 h (entries 4ꢀ6). Excitingly, CuI proved to
be an ideal choice among the catalysts investigated. Sub-
sequently, our study focused on the arylation of 1a by
testing various ligands, such as PBu3, Phen, pyridine, Bpy,
DMEDA, TMEDA, and DABCO (entries 7ꢀ13).The use
of Phen as a ligand significantly improved the catalytic
1
CuCl
CuCl
CuCl
CuBr
CuI
ꢀ
Cs2CO3
ꢀ
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMF
DMA
NMP
toluene
5
2
PPh3
ꢀ
3
PPh3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
K2CO3
t-BuOLi
t-BuOK
K3PO4
t-BuOK
t-BuOK
t-BuOK
25
22
39
35
36
70
43
58
56
21
17
73
86
92(87)d
41
86
85
74
4
PPh3
5
PPh3
6
CuCN
CuI
PPh3
7
PBu3
8
CuI
Phen
9
CuI
pyridine
Bpy
10
11
12
13
14
15
16
17
18
19
20
CuI
CuI
DMEDA
TMEDA
DABCO
Phen
CuI
CuI
CuI
CuI
Phen
CuI
Phen
CuI
Phen
CuI
Phen
CuI
Phen
CuI
Phen
(5) (a) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A.
J. Am. Chem. Soc. 2008, 130, 14926–14927. (b) Lewis, J. C.; Berman,
A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493–
2500. (c) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G.
J. Am. Chem. Soc. 2006, 128, 2452–2462. (d) Lewis, J. C.; Wu, J. Y.;
Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed. 2006, 45, 1589–
1591.
a Reaction conditions: 1a (1 mmol), 2a (1.5 mmol), CuI (5 mol %),
ligand (10 mol %), and base (2.5 mmol) in 2 mL of solvent at 140 °C for
24 h. b Phen = 1,10-phenanthroline; Bpy = 2,20-bipyridine; DMEDA =
N,N0-dimethylethylene diamine; TMEDA = N,N,N,N0-tetramethy-
lethylene diamine; DABCO = 1,4-diazabicyclo[2.2.2]octane. c GC yield.
d Isolated yield.
ꢁ
(6) (a) Stefane, B.; Fabris, J.; Pozzgan, F. Eur. J. Org. Chem. 2011,
3474–3481. (b) Arockiam, P.; Poirier, V.; Fischmeister, C.; Bruneau, C.;
€
Dixneuf, P. H. Green Chem. 2009, 11, 1871–1875. (c) Ozdemir, I.; Demir,
efficiency. Bases such as Cs2CO3, K2CO3, t-BuOLi, t-
BuOK, and K3PO4 were found to facilitate this coupling
reaction, and among them t-BuOK was the best (entries
14ꢀ17). After a variety of solvents were examined, such
as DMF, NMP, DMA, and toluene, DMF was clearly the
best solvent system (entries 18ꢀ20). These preliminary
results revealed that Phen acts as a good ligand with
optimum conditions which includethe presenceoft-BuOK
and CuI as the copper source in DMF solvent at 140 °C for
24 h. The results proved that the conditions previously
reported by Daugulis are optimal for direct arylation.
With the establishment of a viable reaction system, the
scope of this coupling reaction was further expanded and
the results are summarized in Table 2. To explore the scope
of the arylation reaction, a variety of different imidazo[1,2-
a]pyridines (1aꢀ1d) and diverse aryl iodides (2aꢀ2p) were
examined under optimal conditions to form the corre-
sponding product. First, by using 1a as a fixed substrate,
we carried out the arylation of 1a with various types of aryl
iodides. From Table 2, it was found that the reaction
conditions were useful for 2aꢀ2o and in most cases the
corresponding products 3aaꢀ3ao were obtained in mod-
erate to good yields (entries 1ꢀ15). The results clearly
indicate that this protocol is general and applicable for
S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf,
P. H. J. Am. Chem. Soc. 2008, 130, 1156–1157. (d) Ackermann, L. Org.
Lett. 2005, 7, 3123–3125. (e) Ackermann, L.; Althammer, A.; Born, R.
Angew. Chem., Int. Ed. 2006, 45, 2619–2622. (f) Ackermann, L.; Mulzer,
M. Org. Lett. 2008, 10, 5043–5045.
(7) (a) Alvarado, J.; Do, H. Q.; Daugulis, O.; Marsden, P. C.; Ellman,
J. A. Org. Synth. 2011, 87, 184–191. (b) Do, H. Q.; Daugulis, O. J. Am.
Chem. Soc. 2011, 133, 13577–13586. (c) Popov, I.; Lindeman, S.;
Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286–9289. (d) Truong, T.;
Daugulis, O. J. Am. Chem. Soc. 2011, 133, 4243–4245. (e) Do, H. Q.;
Daugulis, O. Org. Lett. 2010, 12, 2517–2519. (f) Kawano, T.; Yoshizumi,
T.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 3072–3075. (g)
Huang, G.; Sun, H.; Qiu, X.; Jin, C.; Lin, C.; Shen, Y.; Jiang, J.; Wang,
L. Org. Lett. 2011, 13, 5224–5227. (h) Do, H. Q.; Daugulis, O. J. Am.
Chem. Soc. 2007, 129, 12404–12405.
(8) (a) Vallee, F.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc.
2010, 132, 1514–1516. (b) Yoshikai, N.; Matsumoto, A.; Norinder, J.;
Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925–2928. (c) Wen, J.;
Zhang, J.; Chen, S. Y.; Li, J.; Yu, X. Q. Angew. Chem., Int. Ed. 2008, 47,
8897–8900.
(9) (a) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem.,
Int. Ed. 2010, 49, 2202–2205. (b) Hachiya, H.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2009, 11, 1737–1740.
(10) Rout, L.; Regati, S.; Zhao, C. G. Adv. Synth. Catal. 2011, 353,
3340–3346.
(11) (a) Husinec, S.; Markovic, R.; Petkovic, M.; Nasufovic, V.;
Savic, V. Org. Lett. 2011, 13, 2286–2289. (b) Trapani, G.; Franco, M.;
Latrofa, A.; Ricciardi, L.; Carotti, A.; Serra, M.; Sanna, E.; Biggio, G.;
Liso, G. J. Med. Chem. 1999, 42, 3934–3941. (c) Linton, A.; Kang, P.;
Ornelas, M.; Kephart, S.; Hu, Q.; Pairish, M.; Jiang, Y.; Guo, C. J. Med.
Chem. 2011, 54, 7705–7712. (d) Dai, W.; Petersen, J. L.; Wang, K. K. J.
Org. Chem. 2005, 70, 6647–6650. (e) Toure, B. B.; Lane, B. S.; Sames, D.
Org. Lett. 2006, 8, 1979–1982.
Org. Lett., Vol. 14, No. 7, 2012
1689