Structure and conformation of 1-oxa- and 1-oxa-2-aza- spiro[2.5]octane
(spectral width: 17 361.1 Hz, 32 768 data points, equivalent 30ꢀ
pulse duration, 256 scans, recycle delay: 0.01 s). Similar conditions
were used for the APT and INEPT spectra. 15N NMR spectra of
compounds 2a–5e were recorded at 30.38 MHz by using INEPT
methods[23] (spectral width: 15151.6 Hz; 16 384 data points, from
1024 to 13 706 scans, depending on the solubility; recycle delay:
[5] (a) W. H. Pirkle, P.L. Rinaldi, J. Org. Chem. 1977, 42, 3217; (b) W.
H. Pirkle, P.L. Rinaldi, S. A. Simmons, J. Magn. Reson. 1979, 34,
251; (c) G. V. Shustov, S. V. Varlamov, I. I. Chervin, A. E. Aliev, R.
G. Kostyanovsky, D. Kim, A. Rauk, J. Am. Chem. Soc. 1989, 111,
4210.
[6] (a) J. Aubé, X. Peng, Y. Wang, F. Takusagawa, J. Am. Chem. Soc.
1992, 114, 5466; (b) L. Bohe, M. Kammoun, Tetrahedron Lett.
2004, 45, 747; (c) L. Bohe, M. Kammoun, Tetrahedron Lett. 2002,
43, 803; (d) L. Bohe, M. Lusinchi, X. Lusinchi, Tetrahedron 1999,
55, 141; (e) T. Katsuki, B. K. Sharpless, J. Am. Chem. Soc. 1980,
102, 5974; (f) W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen,
J. Am. Chem. Soc. 1990, 112, 2801; (g) C. Bonini, G. Righi,
Tetrahedron 2002, 58, 4981.
4 s, the delays were optimized in agreement with JN,H). H–1H
COSY spectra were obtained using the cosy45 pulse sequence[24]
with a 1024 Â 512 data point matrix and a 751.20 Â 751.20 Hz
frequency matrix. The recycle delay was 2 s, and a total of 16
scans were performed. Fourier transformations were carried out
for F1 and F2 using a sine function in the absolute value mode.
13C–1H COSY spectra were obtained with the HETCOR pulse
sequence for the aliphatic region[22] using a 2048 Â 256 data
point matrix and a 6265 Â 751 Hz frequency matrix. The pulse
time intervals 1 and 2 were set to 2 Â 1/4JC,H = 1.85 ms. The
recycle delay was 2 s, and a total of 16 scans were performed.
Fourier transformations were carried out using a square sine
function for F1 and F2 in the absolute value mode. MS studies
of compounds 2a–5e were conducted using a Hewlett–Packard
5890 spectrometer coupled to a gas chromatograph in the EI
mode (at 70 eV). No mass spectra could be obtained for
compounds 1a–1e because of their instability at their respective
boiling temperatures.
3
1
[7] (a) W. H. Pirkle, P. L. Rinaldi, J. Org. Chem. 1978, 43, 4475; (b) Y. Usuki,
Y. Wang, J. Aube, J. Org. Chem., 1995, 60, 8028.
[8] R. Montalvo-González, J. A. Montalvo-González, A. Ariza-Castolo.
Magn. Reson. Chem. 2008, 46, 907.
[9] R. Montalvo-González, A. Ariza-Castolo. Magn. Reson. Chem. 2009,
47, 1013.
(accessed in December, 2011); (b) J.S. Martin, A.R. Quirt, J. Magn.
Reson. 1972, 5, 318; (c) K. Marat, Spin Works, version 3.1.7, University
[11] Y. D. Wu, K. N. Houk, B. M. Trost. J. Am. Chem. Soc. 1987, 109(18),
5560.
[12] D. R. Boyd, D. C. Neil, C. G. Watson, W. B. Jennings, J. Chem. Soc.
Perkin Trans II 1975, 813.
[13] R. M. Silverstein, F. X. Webster, Spectrometric Identification of Organic
Compounds, John Wiley & Sons, New York, 1998.
[14] Atta-ur-Rahman, Nuclear Magnetic Resonance: Basic Principles, New
Yersey, Sringer-Verlag, 1986.
[15] (a) C. A. G. Haasnot, F. A. A. M. DeLeeuw, C. Altona, Tetrahedron 1980,
56, 2783; (b) A. Navarro-Vázquez, J. C. Cobas, F. J. Sardina, J. Chem.
com (accesed: December 2011)
[16] E. Oliveros, M. Riviere, A. Lattes. Org. Magn. Reson. 1976, 8, 601.
[17] G. J. Jordan, D. L. R. Crist. Org. Magn. Reson. 1977, 9, 322.
[18] D. M. Jerina, D. R. Boyd, L. Paolillo, E. D. Becker. Tetrahedron Lett.
1970, 1483.
[19] M. Čudić, R. Herrmann. Magn. Reson. Chem. 1993, 31, 461.
[20] J. A. Guerrero-Alvarez, A. Moncayo-Bautista, A. Ariza-Castolo. Magn.
Reson. Chem. 2004, 42, 524.
[21] R. Carlson, U. Larsson, L. Hansson. Acta Chem. Scand. 1992, 46, 1211.
[22] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P.
Granger. Magn. Reson. Chem. 2002, 40, 489.
[23] (a) G. A. Morris, R. Freeman, J. Am. Chem. Soc. 1979, 101, 760; (b)D. P.
Burum, R. R. Ernst, J. Magn. Reson. 1980, 39, 163; (c) O.W. Sørensen, R.
R. Ernst, J. Magn. Reson. 1991, 91, 648.
References
[1] (a) J. March, Advanced Organic Chemistry, Wiley-Interscience,
New-York, 1992; (b) D. M. Hodgson, E. Gras, Synthesis 2002, 2002,
1625; (c) E. Schmidz, Adv. In Heterocycl. Chem. 1979, 24, 63;
(d) E. Schmidz, in Comprehensive Heterocyclic Chemistry, Pergamon
Press, Oxford, 1984; (e) M. J. Haddadin, J. P. Freeman, in The
Chemistry of Heterocyclic Compounds: Small Ring Heterocycles –
Part 3, John Wiley & Sons, New York, 1985; (f) K. Kloc, E. Kubicz,
J. Mlochowski, L. Syper, Synthesis 1987, 1987, 1084.
[2] (a) B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457; (b) V. K.
Aggarwal, J. N. Harvey, J. Richardson, J. Am. Chem. Soc. 2002,
124, 5747.
[3] (a) W. D. Emmons, J. Am. Chem. Soc. 1956, 78, 6208; (b) W. D.
Emmons, J. Am. Chem. Soc. 1957, 79, 5739; (c) L. Horner, E.
Jurgens, Ber. 1957, 90, 2184; (d) H. Krimm, ibid. 1957, 91, 1057.
[4] (a) J. Bjørgo, D. R. Boyd, J. Chem. Soc. Perkin II 1973, 1575; (b) W.
B. Jennings, S. Al-Showiman, D. R. Boyd, R. M. Campbell, J. Chem.
Soc. Perkin II 1976, 1501; (c) W. B. Jennings, S. P. Watson, M. S.
Tolley, J. Am. Chem. Soc. 1987, 109, 8099; (d) W. B. Jennings, S.
P. Watson, D. R. Boyd, J. Chem. Soc., Chem. Commun. 1992, 1078.
[24] S. Berger, S. Braun, 200 and More NMR Experiments. A Practical Course,
Wiley-VCH, Weinheim, 2004.
Magn. Reson. Chem. 2012, 50, 33–39
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/mrc