Hafnium Trialkyls Stabilized by Bulky, Electron-Rich Aminopyridinates
Synthesis of 2g: Aminopyridine 1g (0.323 g, 1.0 mmol in 20.0 mL
Kashmir and the HEC (Higher Education Commission) Pakistan for a
toluene) was added to tetrabenzylhafnium (0.543 g, 1.0 mmol in scholarship. We thank T. Bauer for his help in the X-ray lab.
20.0 mL toluene). The resultant solution was stirred for 12h at room
temperature. The toluene was removed and the yellow product was
References
extracted and crystallized with n-hexane at –24 °C. Yield 0.60 g
(77%). C42H49HfN3 (773.88): calcd. C 65.13, H 6.38, N 5.43; found
C 64.78, H 6.12, N 5.90 %.
[1] For review articles on aminopyridinato ligands see: a) R. Kempe,
H. Noss, T. Irrgang, J. Organomet. Chem. 2002, 647, 12–20; b)
R. Kempe, Eur. J. Inorg. Chem. 2003, 791–803.
[2] For discussion of the binding modes see: S. Deeken, G. Motz, R.
Kempe, Z. Anorg. Allg. Chem. 2007, 633, 320–325.
[3] For the general applicability of the ligands see: G. Glatz, S. De-
meshko, G. Motz, R. Kempe, Eur. J. Inorg. Chem. 2009, 1385–
1392.
[4] For the synthesis of aminopyridines via Pd catalyzed aryl amin-
ation see: a) S. Wagaw, S. L. Buchwald, J. Org. Chem. 1996,
61, 7240–7241; b) T. Schareina, G. Hillebrand, H. Fuhrmann, R.
Kempe, Eur. J. Inorg. Chem. 2001, 2421–2426.
[5] For selected reviews on amidinate coordination chemistry see: a)
J. Barker, M. Kilner, Coord. Chem. Rev. 1994, 133, 219–300; b)
F. T. Edelmann, Coord. Chem. Rev. 1994, 137, 403–481; c) N.
Nagashima, H. Kondo, T. Hayashida, Y. Yamaguchi, M. Gondo,
S. Masuda, K. Miyazaki, K. Matsubara, K. Kirchner, Coord.
Chem. Rev. 2003, 245, 177–190.
[6] For selected reviews on NacNac coordination chemistry see: a) L.
Kakaliou, W. J. Scanlon IV, B. Qian, S. W. Baek, M. R. Smith III,
D. H. Motry, Inorg. Chem. 1999, 38, 5964–5977; b) B. Qian, W. J.
Scanlon IV, M. R. Smith III, D. H. Motry, Organometallics 1999,
18, 1693–1698; c) L. Bourget-Merle, M. F. Lappert, J. R. Severn,
Chem. Rev. 2002, 102, 3031–3065.
1H NMR (400 MHz, C6D6, 298 K):
δ = 1.17 (m, 10 H,
H14,15,17,18,20,21), 1.30 (d, 6 H, H14,15,17,18), 2.45 (t, 4 H, H19,22), 2.67
(s, 6 H, HCH2benzyl), 3.41 (sept, 2 H, H13,16), 4.96 (d, 1 H, H3), 5.27
(d, 1 H, H5), 6.75 (t, 1 H, H4), 6.86 (d, 6 H, Hbenzyl), 6.94–7.20 (m,
12 H, H9,10,11,CHbenzyl) ppm. 13C NMR (100 MHz, C6D6, 298 K): δ =
24.42 (C14,15,17,18), 24.13 (C14,15,17,18), 25.57 (C13,16), 28.95 (C20,21),
47.81 (C19,22), 89.65 (CCH2benzyl), 91.39 (C3), 96.19 (C5), 122.08
(Cbenzyl), 124.02 (C9,11), 126.47 (Cbenzyl), 128.38 (C10), 133.50 (C8,12),
134.30 (C7), 142.20 (C4), 142.87 (Cbenzyl), 143.09 (C7), 144.14
(Cbenzyl), 154.49 (C6), 165.32 (C2) ppm.
Synthesis of 2h: Aminopyridine 1h (0.281 g, 1.0 mmol in 15.0 mL
toluene) was added to tetrabenzylhafnium (0.543 g, 1.0 mmol in
20.0 mL toluene). The resultant solution was stirred for 12h at room
temperature. The toluene was removed and the yellow product was
extracted and crystallized with n-hexane at –24 °C. Yield 0.560 g
(76%). C39H43HfN3 (732.27): calcd. C 63.97, H 5.92, N 5.74; found
C 63.85, H 5.72, N 5.62 %.
[7] a) R. Kempe, P. Arndt, Inorg. Chem. 1996, 35, 2644–2649; b) M.
Polamo, M. Leskela, Acta Crystallogr., Sect. C 1996, 52, 2975–
2977; c) H. Fuhrmann, S. Brenner, P. Arndt, R. Kempe, Inorg.
Chem. 1996, 35, 6742–6745; d) R. Kempe, Z. Kristallogr. New
Cryst. Struct. 1997, 212, 477–478; e) G. Hillebrand, A. Spannen-
berg, P. Arndt, R. Kempe, Organometallics 1997, 16, 5585–5588;
f) M. Oberthür, G. Hillebrand, P. Arndt, R. Kempe, Chem. Ber./
Recueil 1997, 130, 789–794; g) A. Spannenberg, A. Tillack, P.
Arndt, R. Kirmse, R. Kempe, Polyhedron 1998, 17, 845–850; h)
I. Westmoreland, I. J. Munslow, P. N. O’Shaughnessy, P. Scott,
Organometallics 2003, 22, 2972–2976; i) C. Jones, P. C. Junk,
S. G. Leary, N. A. Smithies, Inorg. Chem. Commun. 2003, 6,
1126–1128; j) M. Talja, M. Klinga, M. Polamo, E. Aitola, M.
Leskela, Inorg. Chim. Acta 2005, 358, 1061–1067; k) R. Fandos,
C. Hernandez, A. Otero, A. Rodriguez, M. J. Ruiz, J. Organomet.
Chem. 2005, 690, 4828–4834; l) E. Smolensky, M. Kapon, J. D.
Woollins, M. S. Eisen, Organometallics 2005, 24, 3255–3265; m)
E. Smolensky, M. Kapon, M. S. Eisen, Organometallics 2005, 24,
5495–5498; n) H. Shen, H.-S. Chan, Z. Xie, Organometallics
2007, 26, 2694–2704; o) V. Bertolasi, R. Boaretto, M. R. Chier-
otti, R. Gobetto, S. Sostero, Dalton Trans. 2007, 5179–5189; p)
M. Talja, T. Luhtanen, M. Polamo, M. Klinga, T. Pakkanen, M.
Leskela, Inorg. Chim. Acta 2008, 361, 2195–2202; q) A. Noor,
R. Kempe, Eur. J. Inorg. Chem. 2008, 2377–2381; r) G. Zi, F.
Zhang, X. Liu, L. Ai, H. Song, J. Organomet. Chem. 2010, 695,
730–739; s) A. Noor, W. P. Kretschmer, G. Glatz, R. Kempe, In-
org. Chem. 2011, 50, 4598–4606; t) M. Hafeez, W. P. Kretschmer,
R. Kempe, Eur. J. Inorg. Chem. 2011, published online, DOI:
10.1002/ejic.201100843.
1H NMR (400 MHz, C6D6, 298 K): δ = 1.20 (t, 4 H, H17,18), 2.25 (s,
6 H, H13,14), 2.26 (s, 3 H, H15), 2.41 (s, 6 H, HCH2benzyl), 2.70 (t, 4 H,
H17,18), 5.06 (d, 1 H, H3), 5.28 (d, 1 H, H5), 6.80 (t, 6 H, Hbenzyl),
6.84 (t, 1 H, H4), 6.95–7.20 (m, 11 H, H9,11,CHbenzyl) ppm. 13C NMR
(400 MHz, C6D6, 298K): δ = 18.54 (C13,14), 20.82 (C15), 24.79
(C17,18), 47.87 (C16,19), 89.39 (CCH2benzyl), 90.41 (C3), 96.25 (C5),
122.20 (C9,11), 127.03 (Cbenzyl), 128.90 (C10), 129.46 (Cbenzyl), 133.91
(C8,12), 134.60 (C7), 142.60 (C10), 143.78 (C4), 142.71 (Cbenzyl),
154.84 (C2), 163.38 (C6) ppm.
NMR Tube Reactions with TMA
[8] a) R. Kempe, S. Brenner, P. Arndt, Organometallics 1996, 15,
1071–1074; b) M. Polamo, M. Leskelä, J. Chem. Soc., Dalton
Trans. 1996, 23, 4345–4349; c) C. Morton, P. N. O’Shaughnessy,
P. Scott, Chem. Commun. 2000, 21, 2099–2100; d) P. N.
O’Shaughnessy, K. M. Gillespie, C. Morton, I. Westmoreland, P.
Scott, Organometallics 2002, 21, 4496–4504; e) H. M. Hoyt, F. E.
Michael, R. G. Bergman, J. Am. Chem. Soc. 2004, 126, 1018–
1019; f) E. J. Crust, I. J. Munslow, C. Morton, P. Scott, Dalton
Trans. 2004, 15, 2257–2266; g) E. J. Crust, A. J. Clarke, R. J.
Deeth, C. Morton, P. Scott, Dalton Trans. 2004, 23, 4050–4058;
h) E. J. Crust, I. J. Munslow, P. Scott, J. Organomet. Chem. 2005,
A NMR tube was charged with 2c (20 mg, 0.025 mmol), deutero-benz-
ene (0.5 mL) together with TMA (54 mg, 0.750 mmol). Afterwards,
the tube was sealed, shaken for 5 min and measured.
Acknowledgments
We thank the Deutsche Forschungsgemeinschaft (DFG) SFB 840 for
supporting this work. M. H. thanks the University of Azad Jammu &
Z. Anorg. Allg. Chem. 2012, 324–330
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
329