Journal of Medicinal Chemistry
Brief Article
Nguyen, M. N.; Pfeffer, L. M.; Slominski, A. T. 20-Hydroxychole-
calciferol, product of vitamin D3 hydroxylation by P450scc, decreases
NF-kappaB activity by increasing IkappaB alpha levels in human
keratinocytes. PloS One 2009, 4 (6), e5988.
(9) Tocchini-Valentini, G.; Rochel, N.; Wurtz, J. M.; Mitschler, A.;
Moras, D. Crystal structures of the vitamin D receptor complexed to
superagonist 20-epi ligands. Proc. Natl. Acad. Sci. U.S.A. 2001, 98 (10),
5491−5496.
(10) (a) Liu, Y. Y.; Collins, E. D.; Norman, A. W.; Peleg, S.
Differential interaction of 1alpha,25-dihydroxyvitamin D3 analogues
and their 20-epi homologues with the vitamin D receptor. J. Biol.
Chem. 1997, 272 (6), 3336−3345. (b) Yang, W.; Freedman, L. P. 20-
Epi analogues of 1,25-dihydroxyvitamin D3 are highly potent inducers
of DRIP coactivator complex binding to the vitamin D3 receptor. J.
Biol. Chem. 1999, 274 (24), 16838−16845.
(11) Hansen, K. B.; Claus Aage, S. Vitamin D Analogues Containing
a Hydroxy Group in the 20-Position. U.S. Patent US 5589471, 1996.
(12) (a) Mijares, A.; Cargill, D. I.; Glasel, J. A.; Lieberman, S. Studies
on the C-20 epimers of 20-hydroxycholesterol. J. Org. Chem. 1967, 32
(3), 810−812. (b) Nes, W. R.; Varkey, T. E. Conformational analysis
of the 17(20) bond of 20-keto steroids. J. Org. Chem. 1976, 41 (9),
1652−1653. (c) Komori, M. H. T. Structures of thornasterols A and B
(biologically active glycosides from asteroidia, XI). Tetrahedron Lett.
1986, 27 (29), 3369−3372.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank College of Pharmacy of UTHSC; the Van
Vleet Endowed Professorship, UT Research Foundation,
University of Western Australia; and NIH/NIAMS Grants
R01AR052190 and 1R01AR056666-01A2 to A.T.S. for financial
support. We thank Jerrod Scarborough for performing HRMS
experiments.
ABBREVIATIONS USED
■
D3, vitamin D3; 7-DHC, 7-dehydrocholesterol; 1,25(OH)2D3,
1α,25-dihydroxyvitamin D3; VDR, vitamin D receptor;
P450scc, CYP11A1; HBTU, O-benzotriazole-N,N,N′,N′-tetra-
methyluronium hexafluorophosphate; TMSCl, trimethylsilyl
chloride; DIPEA, N,N-diisopropylethylamine; TBDMSCl, tert-
butyldimethylsilyl chloride; AIBN, 2-2′-azobisisobutyronitrile;
TBAF, tetrabutylammonium fluoride; TBDPSCl, tert-butyl-
chlorodiphenylsilane
(13) Djerassi, C.; Staunton, J. Optical Rotatory Dispersion Studies.
XLI. α-Haloketones (Part 9). Bromination of Optically Active cis-1-
Decalone. Demonstration of Conformational Mobility by Rotatory
Dispersion. J. Am. Chem. Soc. 1961, 83, 736−743.
REFERENCES
■
(1) Plum, L. A.; DeLuca, H. F. Vitamin D, disease and therapeutic
opportunities. Nat. Rev. Drug Discovery 2010, 9 (12), 941−955.
(2) Lappe, J. M. The role of vitamin D in human health: a paradigm
shift. J. Evidence-Based Complementary Altern. Med. 2011, 16, 58−72.
(3) (a) DeLuca, H. F. Overview of general physiologic features and
functions of vitamin D. Am. J. Clin. Nutr. 2004, 80 (6, Suppl.), 1689S−
16896S. (b) Holick, M. F. Vitamin D Deficiency. N. Engl. J. Med. 2007,
357, 266−281.
(4) Bouillon, R.; Okamura, W. H.; Norman, A. W. Structure−
function relationships in the vitamin D endocrine system. Endocr. Rev.
1995, 16 (2), 200−257.
(5) (a) Pinette, K. V.; Yee, Y. K.; Amegadzie, B. Y.; Nagpal, S.
Vitamin D receptor as a drug discovery target. Mini-Rev. Med. Chem.
2003, 3 (3), 193−204. (b) Takahashi, T.; Morikawa, K. Vitamin D
receptor agonists: opportunities and challenges in drug discovery.
Curr. Top. Med. Chem. 2006, 6 (12), 1303−1316. (c) Schwartz, G. G.
Vitamin D and intervention trials in prostate cancer: from theory to
therapy. Ann. Epidemiol. 2009, 19 (2), 96−102.
(6) (a) Slominski, A.; Semak, I.; Zjawiony, J.; Wortsman, J.; Li, W.;
Szczesniewski, A.; Tuckey, R. C. The cytochrome P450scc system
opens an alternate pathway of vitamin D3 metabolism. FEBS J. 2005,
272 (16), 4080−4090. (b) Li, W.; Chen, J.; Janjetovic, Z.; Kim, T. K.;
Sweatman, T.; Lu, Y.; Zjawiony, J.; Tuckey, R. C.; Miller, D.;
Slominski, A. Chemical synthesis of 20S-hydroxyvitamin D3, which
shows antiproliferative activity. Steroids 2010, 75 (12), 926−935.
(7) (a) Guryev, O.; Carvalho, R. A.; Usanov, S.; Gilep, A.; Estabrook,
R. W. A pathway for the metabolism of vitamin D3: unique
hydroxylated metabolites formed during catalysis with cytochrome
P450scc (CYP11A1). Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (25),
14754−14759. (b) Tuckey, R. C.; Li, W.; Zjawiony, J. K.; Zmijewski,
M. A.; Nguyen, M. N.; Sweatman, T.; Miller, D.; Slominski, A.
Pathways and products for the metabolism of vitamin D3 by
cytochrome P450scc. FEBS J. 2008, 275 (10), 2585−2596.
(8) (a) Slominski, A. T.; Janjetovic, Z.; Fuller, B. E.; Zmijewski, M.
A.; Tuckey, R. C.; Nguyen, M. N.; Sweatman, T.; Li, W.; Zjawiony, J.;
Miller, D.; Chen, T. C.; Lozanski, G.; Holick, M. F. Products of
vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome
P450scc show anti-leukemia effects, having low or absent calcemic
activity. PloS One 2010, 5 (3), e9907. (b) Zbytek, B.; Janjetovic, Z.;
Tuckey, R. C.; Zmijewski, M. A.; Sweatman, T. W.; Jones, E.; Nguyen,
M. N.; Slominski, A. T. 20-Hydroxyvitamin D3, a product of vitamin
D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte
differentiation. J. Invest. Dermatol. 2008, 128 (9), 2271−2780.
(c) Janjetovic, Z.; Zmijewski, M. A.; Tuckey, R. C.; DeLeon, D. A.;
(14) Bartoszewicz, A.; Marcin, K.; Stawinski, J. Iodine-promoted
silylation of alcohols with silyl chlorides. Synthetic and mechanistic
studies. Tetrahedron 2008, 64 (37), 8843−8850.
(15) Slominski, A. T.; Kim, T. K.; Janjetovic, Z.; Tuckey, R. C.;
Bieniek, R.; Yue, J.; Li, W.; Chen, J.; Nguyen, M. N.; Tang, E. K.;
Miller, D.; Chen, T. C.; Holick, M. 20-Hydroxyvitamin D2 is a
noncalcemic analog of vitamin D with potent antiproliferative and
prodifferentiation activities in normal and malignant cells. Am. J.
Physiol.: Cell Physiol. 2011, 300 (3), C526−C541.
(16) Tuckey, R. C.; Li, W.; Shehabi, H. Z.; Janjetovic, Z.; Nguyen, M.
N.; Kim, T. K.; Chen, J.; Howell, D. E.; Benson, H. A.; Sweatman, T.;
Baldisseri, D. M.; Slominski, A. Production of 22-hydroxy metabolites
of vitamin d3 by cytochrome p450scc (CYP11A1) and analysis of their
biological activities on skin cells. Drug Metab. Dispos. 2011, 39 (9),
1577−1588.
(17) (a) Tang, E. K.; Li, W.; Janjetovic, Z.; Nguyen, M. N.; Wang, Z.;
Slominski, A.; Tuckey, R. C. Purified mouse CYP27B1 can hydroxylate
20,23-dihydroxyvitamin D3, producing 1alpha,20,23-trihydroxyvitamin
D3, which has altered biological activity. Drug Metab. Dispos. 2010, 38
(9), 1553−1559. (b) Tang, E. K.; Voo, K. J.; Nguyen, M. N.; Tuckey,
R. C. Metabolism of substrates incorporated into phospholipid vesicles
by mouse 25-hydroxyvitamin D3 1alpha-hydroxylase (CYP27B1). J.
Steroid Biochem. Mol. Biol. 2010, 119 (3−5), 171−179.
(18) Slominski, A.; Zjawiony, J.; Wortsman, J.; Semak, I.; Stewart, J.;
Pisarchik, A.; Sweatman, T.; Marcos, J.; Dunbar, C.; Tuckey, R. C. A
novel pathway for sequential transformation of 7-dehydrocholesterol
and expression of the P450scc system in mammalian skin. Eur. J.
Biochem. 2004, 271 (21), 4178−4188.
(19) Tuckey, R. C.; Nguyen, M. N.; Slominski, A. Kinetics of vitamin
D3 metabolism by cytochrome P450scc (CYP11A1) in phospholipid
vesicles and cyclodextrin. Int. J. Biochem. Cell Biol. 2008, 40 (11),
2619−2626.
3577
dx.doi.org/10.1021/jm201478e | J. Med. Chem. 2012, 55, 3573−3577