LETTER
Formal Synthesis of Antibiotic Macrolide (–)-A26771B
273
O
O
O
a
b
c
HO
5
OBn
O
OBn
OBn
O
OH
O
O
O
7
9
10
OH
O
OH
O
d
e
f
3
OEt
OH
O
O
11
12
O
O
O
P
O
O
OMe
OMe
g
ref. 2a,2g
1
O
N2
8
2
Scheme 3 Reagents and conditions: (a) (i) SO3·py, DMSO, Et3N, CH2Cl2, 0 °C, 1 h; (ii) 8, K2CO3, MeOH, r.t., 12 h, 89%; (b) NBS, AgNO3,
acetone, 0 °C to r.t., 30 min, 93%; (c) 4, n-BuNH2, NH2OH·HCl, CuCl, 0 °C to r.t., 1 h, 78%; (d) H2, 10% Pd/C, EtOH, r.t., 36 h, 84%; (e)
TEMPO, BAIB, PPh3=CHCO2Et, CH2Cl2, r.t. to 0 °C to r.t., 3 h, 78%; (f) LiOH, THF–H2O (1:1), r.t., 12 h, 99%; (g) 2,4,6-trichlorobenzoyl
chloride, Et3N, 0 °C, 2 h, DMAP, toluene, 100 °C, 12 h, 87%.
612. (d) Nagarajan, M. Tetrahedron Lett. 1999, 40, 1207.
(e) Sinha, S. C.; Sinha-Bagchi, A.; Keinan, E. J. Org. Chem.
1993, 58, 7789. (f) Quinkert, G.; Kueber, F.; Knauf, W.;
Wacker, M.; Koch, U.; Becker, H.; Nestler, H. P.; Durner,
G.; Zimmermann, G.; Bats, J. W.; Egert, E. Helv. Chim. Acta
1991, 74, 1853. (g) Tatsuta, K.; Amemiya, Y.; Kanemura,
Y.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1982, 55, 3248.
For racemic synthesis, see: (h) Trost, B. M.; Brickner, S. J.
J. Am. Chem. Soc. 1983, 105, 568. (i) Fujisawa, T.; Okada,
N.; Takeuchi, M.; Sato, T. Chem. Lett. 1983, 1271.
(j) Asaoka, M.; Abe, M.; Mukuta, T.; Takei, H. Chem. Lett.
1982, 215. (k) Asaoka, M.; Yanagida, N.; Takei, H.
Tetrahedron Lett. 1980, 21, 4611.
the coupled product 10 in 78% yield. Diyne 10 underwent
clean saturation under standard hydrogenation conditions
(H2, 10% Pd/C in EtOH) to afford diol 3 in 84% yield.
Selective oxidation of primary hydroxyl group of 3 to
aldehyde (BAIB/TEMPO) and subsequent one-pot Wittig
olefination with
a
stable two-carbon ylide
(Ph3P=CHCO2Et) provided the a,b-unsaturated ester 11
in 78% yield.10 The ester was then hydrolyzed under
LiOH conditions, and the resulting hydroxy acid 12 was
subjected to Yamaguchi macrolactonization11 to get the
desired macrolactone 2 in 87% yield (Scheme 3).12 This
macrolactone has previously been used to accomplish the
synthesis of (–)-A26771B.2a,g
(3) (a) Reddy, Ch. R.; Rao, N. N. Tetrahedron Lett. 2009, 50,
2478. (b) Reddy, Ch. R.; Srikanth, B. Synlett 2010, 1536.
(4) (a) Brown, C. A.; Yamashita, A. J. Am. Chem. Soc. 1975, 97,
891. (b) Kimmel, T.; Becker, D. J. Org. Chem. 1984, 49,
2494.
(5) Horvath, A.; Benner, J.; Backvall, J.-E. Eur. J. Org. Chem.
2004, 3240.
(6) Parikh, J. R.; Doering, W. v. E. v. E. J. Am. Chem. Soc. 1967,
89, 5505.
(7) (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Roth, G. J.;
Liepold, B.; Müller, S. G.; Bestmann, H. J. Synlett 1996,
521. (c) Roth, G. J.; Bernd, L.; Müller, S. G.; Bestmann,
H. J. Synthesis 2004, 59.
In conclusion, this convergent formal synthesis of (–)-
A26771B is achieved in seven steps in the longest linear
sequence from the (R)-propylene oxide with 29.9% over-
all yield. This approach relies on the use of two alkyne
fragments, which were easily obtained from (R)-propy-
lene oxide and (+)-diethyl tartrate. The present route pro-
vides a useful showcase of alkyne-assisted strategy
through zipper reaction, Cadiot–Chodkiewicz coupling,
and Yamaguchi macrolactonization in the synthesis of
macrolides.
(8) Hofmeister, H.; Annen, K.; Laurent, H.; Weichert, R.
Angew. Chem., Int. Ed. Engl. 1984, 23, 727.
(9) (a) Chodkiewicz, W. Ann. Chim. Paris 1957, 2, 819.
(b) Cadiot, P.; Chodkiewicz, W. In Chemistry of Acetylenes;
Viehe, H. G., Ed.; Marcel Dekker: New York, 1969, 597.
(10) Vatele, J.-M. Tetrahedron Lett. 2006, 47, 715.
(11) Inanaga, J.; Hirata, K.; Sacki, H.; Hatsuki, T.; Yamaguchi,
M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
Acknowledgment
D.S. and N.N.R. thank Council of Scientific and Industrial
Research, New Delhi for the award of research fellowship.
(12) Spectral Data of Representative New Compounds
References and Notes
Compound 9: [a]D20 –24.8 (c 1.0, CHCl3). IR (KBr): nmax
2989, 2933, 2864, 2121, 1726, 1635, 1454, 1376, 1241,
1214, 1086, 852, 740, 398 cm–1. 1H NMR (300 MHz,
CDCl3): d = 7.30–7.27 (m, 5 H), 4.59 (s, 2 H), 4.49 (dd,
=
(1) Michel, K. H.; Demoarco, P. V.; Nagarajan, R. J. Antibiot.
1977, 30, 571.
(2) For enantioselective synthesis, see: (a) Gebauer, J.;
Blechert, S. J. Org. Chem. 2006, 71, 2021. (b) Lee, W.;
Shin, H. J.; Chang, S. Tetrahedron: Asymmetry 2001, 12,
29. (c) Kobayashi, Y.; Okui, H. J. Org. Chem. 2000, 65,
J = 2.2, 6.8 Hz, 1 H), 4.25–4.18 (m, 1 H), 3.60 (d, J = 4.5 Hz,
2 H), 2.44 (d, J = 2.2 Hz, 1 H), 1.48 (s, 3 H), 1.41 (s, 3 H).
13C NMR (75 MHz, CDCl3): d = 137.5, 128.3, 127.7, 127.6,
110.8, 80.8, 80.6, 74.6, 73.5, 68.9, 67.1, 26.8, 26.0. ESI-
© Thieme Stuttgart · New York
Synlett 2012, 23, 272–274