C. Kayan et al. / Inorganica Chimica Acta 385 (2012) 164–169
(b) P.W.N.M. Van Leeuwen, Organometallics 16 (1997) 3027;
169
selenium require elevated temperatures, especially for phosphorus
compounds with bulky phenyl-substituent groups [24]. The
selenium compounds decompose, to deposit elemental selenium,
upon exposure to air [22a], and therefore must be handled under
an inert atmosphere.
(d) H. Bricout, J.F. Carpentier, A. Mortreuz, Tetrahedron Lett. 37 (1996) 6105;
(c) T.J. Kwok, D.J. Wink, Organometallics 12 (1993) 1954;
(e) I. Suisse, H. Bricout, A. Mortreux, Tetrahedron Lett. 35 (1994) 413;
(f) D. Gleich, R. Schmid, W.A. Herrmann, Organometallics 17 (1998) 2141;
(g) S. Ganguly, R.M. Roundhill, Organometallics 12 (1993) 4825;
(h) B. Cornils, E.G. Kuntz, J. Organomet. Chem. 502 (1995) 177.
[2] (a) M.S. Balakrishna, V.S.R. Reddy, S.S. Krishnamurthy, J.C.T.R. Burchkette, J.F.
Nixon, Coord. Chem. Rev. 129 (1994) 1;
Reaction of 1 and 2 with [M(cod)Cl2] (M = Pd or Pt; cod = cyclo-
octa-1,5-diene) in CH2Cl2 affords the palladium complexes (1d and
2d) and the platinum complexes (1e and 2e) in good yield (Scheme
2). The 31P{1H} NMR spectra of the complexes contain singlet res-
onances at 34.9 and 41.4 ppm for 1d and 2d and at 19.5 and
20.5 ppm for 1e and 2e, respectively. The spectra of the platinum
(b) J.T. Mague, J. Krinsky, Inorg. Chem. 40 (2001) 1962;
(c) A.M.Z. Slawin, M.B. Smith, J.D. Woollins, J. Chem. Soc. Rev. (1998) 1537.;
(d) K.V. Katti, V.S.R. Reddy, P.R. Singh, Chem. Soc. Rev. (1995) 97.;
(e) M.S. Balakrishna, P.P. George, S.M. Mobin, Polyhedron 24 (2005) 475.
[3] (a) P.C.J. Kamer, P.W.N.M. Leeuwen, J.N.H. Reek, Acc. Chem. Res. 34 (2001) 895;
(b) M. Aydemir, F. Durap, A. Baysal, O. Akba, B. Gümgüm, S. Özkar, L.T. Yıldırım,
Polyhedron 28 (2009) 2313;
1
complexes also exhibit JP–Pt couplings of 3200–3400 Hz, consis-
tent with the expected cis-geometry [25]]. The 31P NMR chemical
shifts of the complexes are in keeping with structurally related
compounds [3,19,20].
_
(c) M. Aydemir, A. Baysal, N. Gürbüz, I. Özdemir, B. Gümgüm, S. Özkar, N.
Çayak, L.T. Yıldırım, Appl. Organometal. Chem. 24 (2010) 17.
[4] (a) N. Biricik, C. Kayan, Durap, B. Gümgüm, Z. Fei, R. Scopelliti, P.J. Dyson, N.
_
Gürbüz, I. Özdemir, Inorg. Chim. Acta 363 (2010) 1039;
(b) K.G. Gaw, M.B. Smith, J.W. Steed, J. Organomet. Chem. 664 (2002) 294.
[5] (a) H.-J. Chen, J.M. Barendt, R.C. Haltiwanger, T.G. Hill, A.D. Norman,
Phosphorus Sulfur 26 (1986) 155;
4. Suzuki coupling reactions
(b) M. Aydemir, A. Baysal, G. Ozturk, B. Gumgum, Appl. Organometal. Chem. 23
(2009) 108;
(c) M. Aydemir, N. Meric, C. Kayan, M. Tog˘rul, B. Gümgüm, Appl. Organometal.
Chem. 24 (2010) 215.
The palladium complexes 1d and 2d were evaluated as pre-
catalysts in the Suzuki reaction of selected aryl bromides with
phenylboronic acid initially under similar conditions to those
reported elsewhere [26]. Following optimization of the reaction,
a catalyst loading of 0.01 mmol was employed together with
Cs2CO3 as the base in dioxane at 80 °C. Control experiments
showed that in the absence of the catalyst no reaction took place.
In the presence of 0.01 mmol of 1d or 2d, however, p-bromoaceto-
phenone, p-bromobenzaldehyde, p-bromobenzene, p-bromotolu-
ene and p-bromoanisole react cleanly with phenylboronic acid to
give appropriate the cross-coupling products in high yield (Table
2). As expected, the yields of the coupling product in reactions of
aryl bromides with electron-withdrawing substituents are higher
than those with an electron-releasing substituent. It is worth not-
ing that ligand 2 is unstable (see above), but once coordinated to
the palladium(II) center, appears to be stable and robust.
[6] (a) P. Bhattacharyya, J.D. Woollins, Polyhedron 14 (1995) 3367;
(b) A. Kilic, F. Durap, M. Aydemir, A. Baysal, J. Organomet. Chem. 693 (2008)
2835;
M. Aydemir, A. Baysal, Polyhedron 29 (2010) 1219.
[7] (a) B. Cornils, W.A. Hermann, Applied Homogeneous Catalysis with
Organometallic Compounds, Wiley-VCH, Weinheim, 1996. pp. 712–732;
(b) F. Durap, M. Rakap, M. Aydemir, S. Özkar, Appl. Catal. A: General 382 (2010)
339.
[8] R.B. Bedford, C.S.J. Cazin, D. Holder, Coord. Chem. Rev. 248 (2004) 2283.
[9] (a) P. Loyd-Williams, E. Giralt, Chem. Soc. Rev. 30 (2001) 145;
(b) C. Najera, J. Gil-Molto, S. Karlström, L.R. Falvello, Org. Lett. 5 (2003) 1451.
[10] H.H. Szmant, Organic Building Block of the Chemical Industry, Wiley, New
York, 1989.
[11] (a) K.C. Nicolaou, H. Li, C.N.C. Body, J.M. Ramanjulu, T.Y. Yue, S. Natarajan, X.J.
Chu, S. Brase, F. Rubsam, Chem. Eur. J. 5 (1999) 2584;
(b) K.C. Nicolaou, A.E. Koumbis, M. Takayanagi, S. Natarajan, N.F. Jain, T. Bando,
H. Li, R. Hughes, Chem. Eur. J. 5 (1999) 2622;
(c) K. Kamikawa, T. Watanabe, A. Daimon, M. Uemura, Tetrahedron 56 (2000)
2325.
[12] J.X. McDermott, J.F. White, G.M. Whitesides, J. Am. Chem. Soc. 98 (1976) 6521.
[13] D. Drew, J.R. Doyle, Inorg. Synth. 13 (1972) 47.
[14] CrysAlis PRO, Oxford Diffraction Ltd., Oxford Industrial Park, 10 Mead Road,
Yarnton, Oxfordshire OX5 1QU, UK, 2009.
[15] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
[16] G.M. Shelx, Acta Crystallogr., Sect. A 64 (2008) 112.
[17] K.G. Gaw, M.B. Smith, A.M.Z. Slawin, New J. Chem. 24 (2000) 429.
[18] A.D. Burrows, M.F. Mahon, M.T. Palmer, J. Chem. Soc., Dalton Trans. (2000)
1669.
[19] N. Biricik, F. Durap, C. Kayan, B. Gümgüm, Heteroatom Chem. 18 (2007) 613.
[20] N. Biricik, Z. Fei, R. Scopelliti, P.J. Dyson, Helv. Chem. Acta 86 (2003) 3281.
[21] (a) N. Biricik, F. Durap, B. Gumgum, Z. Fei, R. Scopelliti, Transition Met. Chem.
32 (2007) 877;
5. Conclusions
In conclusion, two new bis(diphenylphosphino)amines and their
oxides, sulfides and selenides have been prepared. In addition, the
coordination behaviour of ligands 1 and 2 towards palladium(II)
and platinum(II) were described. We also demonstrated the appli-
cation of palladium complexes of these bis(phosphino)amine li-
gands as pre-catalyst in the Suzuki coupling and Heck reactions of
aryl halides. Because of the strength of the Pt–C bonds, Pt(II)-
bis(phosphino)amine 1e and 2e system exhibited no catalytic activ-
ity. Only the palladium complexes were found to show catalytic
activity in both the Suzuki coupling reactions of aryl bromides. In
both cases, the catalytic activities of complexes 1d and 2d were
found to be higher in reactions of aryl bromides with electron-with-
drawing substituent than those with electron-releasing substitu-
ent. The procedure is quite simple and efficient towards various
aryl bromides and does not require an induction period.
(b) F. Durap, N. Biricik, B. Gumgum, S. Özkar, W.H. Ang, Z. Fei, R. Scopelliti,
Polyhedron 27 (2008) 196;
(c) A. Baysal, M. Aydemir, F. Durap, B. Gümgüm, S. Özkar, L.T. Yıldırım,
Polyhedron 26 (2007) 3373.
[22] E. Lindler, M. Mohr, C. Nachtigal, R. Fawzi, G. Henkel, J. Organomet. Chem. 595
(2000) 166.
[23] Z. Fei, R. Scopelliti, P.J. Dyson, Dalton Trans. (2003) 2772.
[24] (a) Z. Fei, Y. Lu, M. Freytag, P.G. Jones, R. Schmutzler, Z. Anorg. Allg. Chem. 626
(2000) 969;
(b) Z. Fei, N. Kocher, C.J. Mohrschladt, H. Ihmels, D. Stalke, Angew. Chem., Int.
Ed. 42 (2003) 783 (Angew. Chem. 115 (2003) 887–889).
[25] M.S. Balakrishna, S.S. Krishnamurthy, R. Murugavel, M. Netaji, I.I. Mathews, J.
Chem. Soc., Dalton Trans. 3 (1993) 477;
Acknowledgement
(b) A.M.Z. Slawin, J.D. Woollins, Q. Zhang, J. Chem. Soc., Dalton Trans. (2001)
621.
Financial support from Dicle University Research Fund (Project
number: DUBAP-06-FF-07) is gratefully acknowledged.
_
[26] I. Özdemir, S. Yasßar, S. Demir, B. Çetinkaya, Heteroatom Chem. 16 (7) (2005)
557.
References
[1] (a) L.H. Pignolet, Homogeneous Catalysis with metal Phosphine Complexes,
Plenum Press, New York, 1983;