8 T. Miteva, A. Meisel, W. Knoll, H. G. Nothofer, U. Scherf,
€
D. C. Muller, K. Meerholz, A. Yasuda and D. Neher, Adv. Mater.,
2001, 13, 565.
9 (a) C.-S. Wu and Y. Chen, J. Mater. Chem., 2010, 20, 7700; (b)
J.-I. Lee, H. Y. Chu, H. Lee, J. Oh, L.-M. Do, T. Zyung, J. Lee
and H.-K. Shim, ETRI J., 2005, 27, 181.
fluorescence quantum efficiency up to 74% was obtained. All of
them were thermally stable amorphous materials with a glass
transition temperature well above 170 ꢀC. Their abilities as both
blue light-emitting materials for blue OLEDs and hole-trans-
porting materials for green OLEDs in terms of device perfor-
mance and thermal property were greater than a commonly used
NPB. Importantly, BPTF having two pyrene rings as terminal
substituents showed promising potential as both blue light-
emitting and hole-transporting materials for OELD devices.
Non-doped blue OLEDs with a maximum luminance efficiency
of 2.06 cd Aꢁ1, and green OLEDs with a maximum luminance
efficiency of 4.94 cd Aꢁ1 were obtained. The use of this type of
molecular platform might be an effective way to prepare high Tg
amorphous materials for long-lifetime device applications,
especially for high-temperature applications in OLEDs or other
organic optoelectronic devices.
10 C. Ego, A. C. Grimsdale, F. Uckert, G. Yu, G. Srdanov and
€
K. Mullen, Adv. Mater., 2002, 14, 809.
11 M. Surin, E. Hennebicq, C. Ego, D. Marsitzky, A. C. Grimsdale,
ꢀ
ꢁ
K. Mu€llen, J.-L. Bredas, R. Lazzaroni and P. Leclere, Chem.
Mater., 2004, 16, 994.
12 (a) T. Zhang, D. Liu, Q. Wang, R. Wang, H. Ren and J. Li, J. Mater.
Chem., 2011, 21, 12969; (b) L. S. Chinelatto, Jr, J. del Barrio,
~
M. Pinol, L. Oriol, M. A. Matranga, M. P. De Santo and
R. Barberi, J. Photochem. Photobiol., A, 2010, 210, 130; (c)
V. Promarak, S. Saengsuwan, S. Jungsuttiwong, T. Sudyoadsuk
and T. Keawin, Tetrahedron Lett., 2007, 48, 89.
13 Z. Zhao, S. Chen, J. W. Y. Lam, Z. Wang, P. Lu, F. Mahtab,
H. H. Y. Sung, I. D. Williams, Y. Ma, H. S. Kwok and B. Z. Tang,
J. Mater. Chem., 2011, 21, 7210.
14 K. Fujimoto, S. Yamada and M. Inouye, Chem. Commun., 2009,
7164.
15 C. Tang, F. Liu, Y.-J. Xia, L.-H. Xie, A. Wei, S.-B. Li, Q.-L. Fan and
W. Huang, J. Mater. Chem., 2006, 16, 4074.
16 T. Kumchoo, V. Promarak, T. Sudyoadsuk, M. Sukwattanasinitt and
P. Rashatasakhon, Chem.–Asian J., 2010, 5, 2162.
Acknowledgements
This work was financially supported by the Thailand Research
Fund (RMU5080052). We acknowledge the scholarship support
from Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Ubon Ratchathani University, and the Office of
the Higher Education Commission, Thailand.
17 T. Kartens and K. Kobs, J. Phys. Chem., 1980, 84, 1871.
18 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski,
J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich,
J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain,
O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi,
B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman,
J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon,
E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.7,
Gaussian, Inc., Pittsburgh, PA, 1998.
Notes and references
1 B. W. D’Andrade and S. R. Forrest, Adv. Mater., 2004, 16, 1585.
2 (a) A. Thangthong, D. Meunmart, T. Sudyoadsuk, S. Jungsuttiwong,
N. Prachumrak, T. Keawin and V. Promarak, Chem. Commun., 2011,
47, 7122; (b) E. Wang, C. Li, Y. Mo, Y. Zhang, G. Ma, W. Shi,
J. Peng, W. Yang and Y. Cao, J. Mater. Chem., 2006, 16, 4133; (c)
S.-H. Liao, J.-R. Shiu, S.-W. Liu, S.-J. Yeh, Y.-H. Chen,
C.-T. Chen, T. J. Chow and C.-I. Wu, J. Am. Chem. Soc., 2009,
131, 763.
19 S. R. Forrest, D. D. C. Bradley and M. E. Thomson, Adv. Mater.,
2003, 15, 1043.
20 (a) V. Promarak, M. Ichikawa, T. Sudyoadsuk, S. Saengsuwan and
T. Keawin, Opt. Mater., 2007, 30, 364; (b) D. Seka, E. Grabieca,
H. Janeczeka, B. Jarzabeka, B. Kaczmarczyka, M. Domanskia and
A. Iwan, Opt. Mater., 2010, 32, 1514.
3 G. Grem, G. Leditzky, B. Ullrich and G. Leising, Adv. Mater., 1992,
4, 36.
4 (a) S. Kappaun, H. Scheiber, R. Trattnig, E. Zojer, E. J. W. List and
€
C. Slugovc, Chem. Commun., 2008, 5170; (b) J. Huber, K. Mullen,
21 R. Fink, Y. Heischkel, M. Thelakkat and H. Schmidt, Chem. Mater.,
1998, 10, 3620.
22 K. T. Kamtekar, C. Wang, S. Bettington, A. S. Batsanov,
I. F. Perepichka, M. R. Bryce, J. H. Ahn, M. Rabinal and
M. C. Petty, J. Mater. Chem., 2006, 16, 3823.
J. Salbeck, H. Schenk, U. Scherf, T. Stehlin and R. Stern, Acta
Polym., 1994, 45, 244; (c) M. R. Craig, M. M. de Kok,
J. W. Hofstraat, A. P. H. J. Schenning and E. W. Meijer, J. Mater.
Chem., 2003, 13, 2861.
5 D. Vak, C. Chun, C. L. Lee, J.-J. Kim and D.-Y. Kim, J. Mater.
Chem., 2004, 14, 1342.
23 S. Kirchmeyer and K. Reuter, J. Mater. Chem., 2005, 15, 2077.
24 W. Kim, G. Kushto, G. Kim and Z. Kafafi, J. Polym. Sci., Part B:
Polym. Phys., 2003, 41, 2522.
€
6 (a) S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Mullen,
F. Meghdadi, E. J. W. List and G. Leising, J. Am. Chem. Soc., 2001,
123, 946; (b) E. J. W. List, R. Guentner, P. Scandiucci de Freitas and
U. Scherf, Adv. Mater., 2002, 14, 374; (c) J.-I. Lee, V. Y. Lee and
R. D. Miller, ETRI J., 2002, 24, 409.
7 D. Sainova, T. Miteva, H. G. Nothofer, U. Scherf, I. Glowacki,
J. Ulanski, H. Fujikawa and D. Neher, Appl. Phys. Lett., 2000, 76,
1810.
ꢁ
25 U. Mitschke and P. BaEuerle, J. Mater. Chem., 2000, 10, 1471.
26 (a) A. Thaengthong, S. Saengsuwan, S. Jungsuttiwong, T. Keawin,
T. Sudyoadsuk and V. Promarak, Tetrahedron Lett., 2011, 52, 4749;
(b) Y. K. Kim and S.-H. Hwang, Synth. Met., 2006, 156, 1028.
27 D. Y. Kim, H. N. Cho and C. Y. Kim, Prog. Polym. Sci., 2000, 25,
1089.
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 6869–6877 | 6877