Organometallics
Communication
(4) (a) Sellmann, D.; Hille, A.; Rosler, A.; Heinemann, F. W.; Moll,
M.; Brehm, G.; Schneider, S.; Reiher, M.; Hess, B. A.; Bauer, W. Chem.
Eur. J. 2004, 10, 819. (b) Chen, Y.; Zhou, Y.; Chen, P.; Tao, Y.; Li, Y.;
̈
bridged diiron complexes but rather a mononuclear iron
complex bearing a π-arenethiolate ligand, [Cp*Fe(η5-SAr′)]
(Ar′ = 2,6-bis(trimethyl)phenyl) (7).16 As described in Scheme
4, the reaction pathway for the reduction of hydrazines using 2
as a catalyst is considered to be quite different from that
proposed by Qu and co-workers.4b The results described in this
paper provide another successful example of the catalytic
reduction of hydrazines by using sulfur-bridged diiron
complexes as catalysts, although other transition-metal
complexes bearing bridging sulfur ligands were previously
reported to work as catalysts.17
In summary, we have newly prepared thiolate-bridged diiron
complexes bearing diazenido and diazene ligands with side-on
coordination. These sulfur-bridged diiron complexes have been
revealed to work as effective catalysts toward the reduction of
hydrazines into amines and ammonia. The reduction of
hydrazine is considered to proceed via a sequential process of
protonation and reduction on the sulfur-bridged diiron
skeleton. On the basis of experimental results, a novel reaction
pathway for the reduction of hydrazines has been proposed,
where the disproportionation of hydrazines is considered to be
one of the key steps. We believe that the result described in this
paper provides the ability of two iron atoms to cooperatively
bind and transform a nitrogenous substrate, which is a
capability that may be shared by the Fe7MoS9C cluster core
in nitrogenase.18 Further work is currently in progress to
develop the iron-catalyzed reduction of dinitrogen into
ammonia under mild reaction conditions.19
Qu, J. J. Am. Chem. Soc. 2008, 130, 15250. (c) Saouma, C. T.; Muller,
̈
P.; Peters, J. C. J. Am. Chem. Soc. 2009, 131, 10358. (d) Lee, Y.;
Mankad, N. P.; Peters, J. C. Nature Chem. 2010, 2, 558. (e) Chen, Y.;
Liu, L.; Peng, Y.; Chen, P.; Luo, Y.; Qu, J. J. Am. Chem. Soc. 2011, 133,
1147. (f) Takaoka, A.; Mankad, N. P.; Peters, J. C. J. Am. Chem. Soc.
2011, 133, 8440. (g) Saouma, C. T.; Kinney, R. A.; Hoffman, B. M.;
Peters, J. C. Angew. Chem., Int. Ed. 2011, 50, 3446. (h) Rodriguez, M.
M.; Bill, E.; Brennessel, W. W.; Holland, P. L. Science 2011, 334, 780.
(5) (a) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. Nature Chem. 2011,
3, 120. (b) Schrock, R. R. Nature Chem. 2011, 3, 95. (c) Arashiba, K.;
Sasaki, K.; Kuriyama, S.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.
Organometallics 2012, 31, 2035.
(6) (a) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.
(b) Schrock, R. R. Acc. Chem. Res. 2005, 38, 955.
(7) (a) Nishibayashi, Y.; Iwai, S.; Hidai, M. Science 1998, 279, 540.
(b) Nishibayashi, Y.; Iwai, S.; Hidai, M. J. Am. Chem. Soc. 1998, 120,
10559. (c) Nishibayashi, Y.; Saito, M.; Uemura, S.; Takekuma, S.;
Takekuma, H.; Yoshida, Z. Nature 2004, 428, 279. (d) Tanaka, H.;
Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.;
Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.
(e) For a recent review, see: Nishibayashi, Y. Dalton Trans. 2012,
DOI: 10.1039/C2DT30105A.
(8) Recently, we have developed novel catalytic transformation of
propargylic alcohols by using thiolate-bridged diruthenium complexes
as catalysts. (a) For a recent example, see: Ikeda, M.; Miyake, Y.;
Nishibayashi, Y. Angew. Chem., Int. Ed. 2010, 49, 7289 and references
therein. (b) For a recent review, see: Nishibayashi, Y. Synthesis 2012,
44, 489 and references therein.
(9) (a) Hidai, M.; Mizobe, Y. Can. J. Chem. 2005, 83, 358 and
references therein. (b) Qu and co-workers reported the preparation of
analogous iron complexes such as [Cp*Fe(μ-SR)3FeCp*] (Fe(II)−
Fe(III) complex) and [Cp*FeX(μ-SR)]2 (Fe(III)−Fe(III) com-
plex),4b,e,12 but there has been no report on the preparation of
[Cp*Fe(μ-SR)]2 (Fe(II)−Fe(II) complex) as shown in the present
paper.
ASSOCIATED CONTENT
* Supporting Information
Figures, tables, text, and CIF files giving experimental
procedures, spectroscopic data, and X-ray data. This material
■
S
(10) DeBlois, R. E.; Rheingold, A. L.; Samkoff, D. E. Inorg. Chem.
1988, 27, 3506.
(11) Sutton, D. Chem. Rev. 1993, 93, 995.
(12) Chen, Y.; Zhou, Y.; Qu, J. Organometallics 2008, 27, 666.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(13) (a) Vela, J.; Stoian, S.; Flaschenriem, C. J.; Munck, E.; Holland,
̈
P. L. J. Am. Chem. Soc. 2004, 126, 4522. (b) Lees, N. S.; McNaughton,
R. L.; Gregory, W. V.; Holland, P. L.; Hoffman, B. M. J. Am. Chem. Soc.
2008, 130, 546.
The authors declare no competing financial interest.
(14) See the Supporting Information for experimental details.
(15) The complex 5 was prepared and characterized by X-ray
crystallography. See the Supporting Information for experimental
details.
(16) (a) See the Supporting Information for experimental details.
(b) A similar mononuclear ruthenium complex bearing a π-
arenethiolate ligand, [Cp*Ru(η5-SAr′)], has already been reported:
Yuki, M.; Miyake, Y.; Nishibayashi, Y. Organometallics 2010, 29, 4148.
(17) (a) Malinak, S. M.; Demadis, K. D.; Coucouvanis, D. J. Am.
Chem. Soc. 1995, 117, 3126. (b) Demadis, K. D.; Coucouvanis, D.
Inorg. Chem. 1995, 34, 3658. (c) Demadis, K. D.; Malinak, S. M.;
Coucouvanis, D. Inorg. Chem. 1996, 35, 4038. (d) Grand, N. L.; Muir,
K. W.; Petillon, F. Y.; Pickett, C. J.; Schollhammer, P.; Talarmin, J.
́
Chem. Eur. J. 2002, 8, 3115.
(18) Lukoyanov, D.; Dikanov, S. A.; Yang, Z.-Y.; Barney, B. M.;
Samoilova, R. I.; Narasimhulu, K. V.; Dean, D. R.; Seefeldt, L. C.;
Hoffman, B. M. J. Am. Chem. Soc. 2011, 133, 11655 and references
therein.
ACKNOWLEDGMENTS
■
This work was supported by the Funding Program for Next
Generation World-Leading Researchers (GR025). Financial
support from Toyota Motor Corp. is also gratefully acknowl-
edged. We thank the Research Hub for Advanced Nano
Characterization at The University of Tokyo for X-ray analysis.
REFERENCES
■
(1) (a) Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.;
Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334,
940. (b) Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe,
M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974.
(2) (a) Dance, I. Dalton Trans. 2008, 5977. (b) Kastner, J.; Blochl, P.
E. J. Am. Chem. Soc. 2007, 129, 2998.
(3) (a) Zhou, H.-C.; Su, W.; Achim, C.; Rao, P. V.; Holm, R. H.
Inorg. Chem. 2002, 41, 3191. (b) Mori, H.; Seino, H.; Hidai, M.;
Mizobe, Y. Angew. Chem., Int. Ed. 2007, 46, 5431. (c) Ohki, Y.;
Ikagawa, Y.; Tatsumi, K. J. Am. Chem. Soc. 2007, 129, 10457.
(d) Tanaka, H.; Mori, H.; Seino, H.; Hidai, M.; Mizobe, Y.; Yoshizawa,
K. J. Am. Chem. Soc. 2008, 130, 9037. (e) Ohki, Y.; Imada, M.; Murata,
A.; Sunada, Y.; Ohta, S.; Honda, M.; Sasamori, T.; Tokitoh, N.;
Katada, M.; Tatsumi, K. J. Am. Chem. Soc. 2009, 131, 13168.
̈
̈
(19) Nishibayashi, Y. Nature Chem. 2011, 3, 502 and references
therein.
2956
dx.doi.org/10.1021/om300134t | Organometallics 2012, 31, 2953−2956