10.1002/anie.202013926
Angewandte Chemie International Edition
RESEARCH ARTICLE
[7]
a) W.Y. Han, J. Zuo, X. M. Zhang, W. C. Yuan, Tetrahedron 2013, 69,
537; b) L. Bayeh, P. Q. Le, U. K. Tambar, Nature 2017, 547, 196.
D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351.
a) A. P. Cꢀtꢁ, A. I. Benin, N. W. Ockwig, M. O’keeffe, A. J. Matzger, O.
M. Yaghi, Science 2005, 310, 1166; b) C. S. Diercks, O. M. Yaghi,
Science 2015, 355, 6328.
Conclusion
[8]
[9]
We have reported two 3D CCOFs with interpenetrated open
frameworks that were prepared by imine condensation of
tetrahedral tetraamine and chiral BINOL dialdehydes. The BINOL
hydroxyl groups that are periodically aligned within the tubular
channels exhibit greatly enhanced acidity relative to the free acids
and can function as heterogeneous Brønsted acid catalysts for
the asymmetric acetalization of aromatic aldehydes and 2-
aminobenzamide to generate the products with up to 93% yield
and 97% ee. In contrast, the corresponding homogeneous
controls display no enantioselectivity. The COFs catalysts display
high robustness and can be recycled multiple times without
deterioration of catalytic activity and enantioselectivity. DFT
calculations suggest that the induced enantioselectivity of BINOL
can be ascribed to the steric hindrance and confinement effect of
framework. By enantioselective induction under confinement, we
can expect that more novel heterogeneous asymmetric catalysts
can be designed and constructed from non-enatioselective
catalysts.
[10] a) S. Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548; b) T. Ma, E. A.
Kapustin, S. X. Yin, L. Liang, Z. Zhou, J. Niu, X. Wang, Science 2018,
361, 48; c) X. Han, C. Yuan, B. Hou, L. Liu, H. Li, Y. Liu, Y. Cui, Chem.
Soc. Rev. 2020, 49, 6248; d) J. Dong, X. Han, Y. Liu, H. Li, Y. Cui, Angew.
Chem. Int. Ed. 2020, 59, 13722.
[11] a) H. Furukawa, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 8875; b) H.
Fan, A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, J. Caro, J.
Am. Chem. Soc. 2018, 140, 10094; c) P. Das, S. K. Mandal, Chem. Mater.
2019, 31, 1584; d) J. Huang, X. Han, S. Yang, Y. Cao, C. Yuan, Y. Liu,
J. Wang, Y. Cui, J. Am. Chem. Soc. 2019, 141, 8996.
[12] a) S. DAlapati, S. Jin, J. Gao, Y. Xu, A. Nagai, D. Jiang, J. Am. Chem.
Soc. 2013, 135, 17310; b) G. Lin, H. Ding, D. Yuan, B. Wang, C. Wang,
J. Am. Chem. Soc. 2016, 138, 3302; c) S. Y. Ding, M. Dong, Y. W. Wang,
Y. T. Chen, H. Z. Wang, C. Y. Su, W. Wang, J. Am. Chem. Soc. 2016,
138, 3031; d) L. Ascherl, E. W. Evans, J. Gorman, S. Orsborne, D.
Bessinger, T. Bein, R. H. Friend, F. Auras, J. Am. Chem. Soc. 2019, 141,
15693; e) S. Jhulki, A. M. Evans, X. L. Hao, M. W. Cooper, C. H. Feriante,
J. Leisen, H. Li, D. Lam, M. C. Hersam, S. Barlow, J. L. Brédas, W. R.
Dichtel, S. R. Marder, J. Am. Chem. Soc. 2020, 142, 783.
[13] a) S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W.
Wang, J. Am. Chem. Soc. 2011, 133, 19816; b) W. Chen, Y. Tang, B.
Aguila, Y. Pan, A. Zheng, Z. Yang, L. Wojtas, S. Ma, F. S. Xiao, Matter
2020, 2, 416; c) Y. Wan, L. Wang, H. Xu, X. Wu, J. Yang, J. Am. Chem.
Soc. 2020, 142, 4508; d) S. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H.
Gu, W. Zhang, J. Am. Chem. Soc. 2017, 139, 17082; e) X. Wang, L.
Chen, S. Y. Chong, M. A. Little, Y. Wu, W. H. Zhu, R. Clowes, Y. Yan, M.
A. Zwijnenburg, R. S. Sprick, A. I. Cooper, Nat. Chem. 2018, 10, 1180;
f) X. Wu, X. Han, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140, 16124; g)
X. Kang, X. Han, C. Yuan, C. Cheng, Y. Liu, Y. Cui, J. Am. Chem. Soc.
2020, 142, 16346; h) X. Han, Q. Xia, J. Huang, Y. Liu, C. Tan, Y. Cui, J.
Am. Chem. Soc. 2017, 139, 8693.
Acknowledgements
The authors acknowledge the financial support of the National
Science Foundation of China (Grant Nos. 21620102001,
91856204, 91956124 and 21875136), the National Key Basic
Research Program of China (2016YFA0203400), Key Project of
Basic Research of Shanghai (19JC1412600, 17JC1403100 and
18JC1413200),
and
Shanghai
Rising-Star
Program
(19QA1404300), the China Postdoctoral Innovative Talent
Support Program (BX20190195) and the China postdoctoral
science foundation (2019M661483).
[14] a) Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo,
S. Qiu, Y. Yan, J. Am. Chem. Soc. 2015, 137, 8352; b) S. Bhunia, K. A.
Deo, A. K. Gahawar, Adv. Funct. Mater. 2020, 30, 2002046; c) C. Wang,
H. Liu, S. Liu, Z. Wang, J. Zhang, Front. Chem. 2020, 8, 488.
[15] a) H. L. Qian, C. X. Yang, X. P. Yan, Nat. Commun. 2016, 7, 12104; b)
X. Han, J. Huang, C. Yuan, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2018, 140,
892; c) C. Yuan, X. Wu, R. Gao, X. Han, Y. Liu, Y. Long, Y. Cui, J. Am.
Chem. Soc. 2019, 141, 20187.
Conflict of interest
The authors declare no conflict of interest.
[16] X. Wu, X. Han, Q. Xu, Y. Liu, C. Yuan, S. Yang, Y. Liu, J. Jiang, Y. Cui,
J. Am. Chem. Soc. 2019, 141, 7081.
Keywords: covalent organic framework • porosity • catalysis •
chirality • crystal engineering
[17] a) H. Xu, J. Gao, D. Jiang, Nat. Chem. 2015, 7, 905; b) H. Xu, S. Ding,
W. An, H. Wu, W. Wang, J. Am. Chem. Soc. 2016, 138, 11489; c) X.
Wang, X. Han, J. Zhang, X. Wu, Y. Liu, Y. Cui, J. Am. Chem. Soc. 2016,
138, 12332; d) J. Zhang, X. Han, X. Wu, Y. Liu, Y. Cui, J. Am. Chem.
Soc. 2017, 139, 8277; e) S. Zhang, Y. Zheng, H. An, B. Aguila, C. X.
Yang, Y. Dong, W. Xie, P. Cheng, Z. Zhang, Y. Chen, S. Ma, Angew.
Chem. Int. Ed. 2018, 57, 16754; f) H. C. Ma, C. C. Zhao, G. J. Chen, Y.
B. Dong, Nat. Commun. 2019, 10, 3368; g) L. K. Wang, J. J. Zhou, Y. B.
Lan, S. Y. Ding, W. Yu, W. Wang, Angew. Chem. Int. Ed. 2019, 58, 9443.
[18] C. Tan, K. Yang, J. Dong, Y. Liu, J. Jiang, Y. Cui, J. Am. Chem. Soc.
2019, 141, 17685.
[1]
[2]
a) R. Noyori, I. Tomino, Y. Tanimoto, J. Am. Chem. Soc. 1979, 101, 3129;
b) R. Noyori, I. Tomino, Y. Tanimoto, M. Nishizawa, J. Am. Chem. Soc.
1979, 101, 5843; c) J. M. Brunel, Chem. Rev. 2005, 105, 857.
a) B. D. Chapsal, Z. Hua, I. Ojima, Tetrahedron-Asymmetry 2006, 17,
642 b) K. Yasumoto, T. Kano, K. J. Maruoka, Org. Chem. 2020, 85,
10232; c) Y. Liu, I. D. Gridnev, W. Zhang, Angew. Chem., Int. Ed. 2014,
53, 1901.
[3]
[4]
a) L. Pu, Acc. Chem. Res. 2012, 45, 150; b) H. L. Liu, H. P. Zhu, X. L.
Hou, L. Pu, Org. Lett. 2010, 12, 4172.
a) S. Zhang, Y. Wang, F. Meng, C. Dai, Y. Cheng, C. Zhu, Chem.
Commun. 2015, 51, 9014; b) H. Maeda, Y. Bando, K. Shimomura, I.
Yamada, M. Naito, K. Nobusawa, H. Tsumatori, T. Kawai, J. Am. Chem.
Soc. 2011, 133, 9266.
[19] a) D. Huang, X. Li, F. Xu, L. Li, X. Lin, ACS Catal. 2013, 3, 2244; b) X.
Cheng, S. Vellalath, R. Goddard, B. List, J. Am. Chem. Soc. 2008, 130,
15786.
[20] C. Qian, Q. Y. Qi, G. F. Jiang, F. Z. Cui, Y. Tian, X. Zhao, J. Am. Chem.
Soc. 2017, 139, 6736.
[5]
[6]
a) Y. Chen, S. Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155; b) R.
Alam, C. Diner, S. Jonker, L. Eriksson, K. J. Szabό, Angew. Chem. Int.
Ed. 2016, 55, 14417.
[21] a) C. Walling, J. Am. Chem. Soc. 1950, 72, 1164; b) K. Kaupmees, N.
Tolstoluzhsky, S. Raja, M. Rueping, I. Leito, Angew. Chem. Int. Ed. 2013,
52, 11569.
a) K. Matsui, S. Takizawa, H. Sasai, J. Am. Chem. Soc. 2005, 127, 3680;
b) J. M. Wieting, T. J. Fisher, A. G. Schafer, M. D. Visco, J. C. Gallucci,
A. E. Mattson, Eur. J. Org. Chem. 2015, 2015, 525; c) Y. Zhang, N. Li, B.
Qu, S. Ma, H. Lee, N. C. Gonnella, J. Wang, Org. Lett. 2013, 15, 1710.
[22] a) W. Gong, X. Chen, H. Jiang, D. Chu, Y. Cui, Y. Liu, J. Am. Chem. Soc.
2019, 141, 7498; b) X. Chen, H. Jiang, X. Li, B. Hou, W. Gong, X. Wu, X.
8
This article is protected by copyright. All rights reserved.