Iron-Catalysed Markovnikov Hydrothiolation of Styrenes
[9] Different systems for Michael-type additions in anti-
Markovnikov fashion, see: a) S. Gao, T. Tzeng,
M. N. V. Sastry, C.-M. Chu, J.-T. Liu, C. Lin, C.-F. Yao,
Tetrahedron Lett. 2006, 47, 1889; b) F. Busquꢀ, P. de
March, M. Figueredo, J. Font, L. Gonzꢆlez, Eur. J. Org.
Chem. 2004, 7, 1492; c) P. McDaid, Y. Chen, L. Deng,
Angew. Chem. 2002, 114, 348; Angew. Chem. Int. Ed.
2002, 41, 338; d) M. Bandini, P. G. Cozzi, M. Giacomi-
ni, P. Melchiorre, S. Selva, A. Umani-Ronchi, J. Org.
Chem. 2002, 67, 3700; e) K. Nishimura, K. Tomioka, J.
Org. Chem. 2002, 67, 431; f) S. Kanemasa, Y. Oderao-
toshi, E. Wada, J. Am. Chem. Soc. 1999, 121, 8675;
g) E. Emori, T. Arai, H. Sasai, M. Shibasaki, J. Am.
Chem. Soc. 1998, 120, 4043; h) O. Miyata, T. Shinada, I.
Ninomiya, T. Naito, T. Date, K. Okamura, S. Inagaki, J.
Org. Chem. 1991, 56, 6556; i) I. Kuwajima, T. Muro-
fushi, E. Nakamura, Synthesis 1976, 602. In particular,
1,4-Michael additions of thiols to activated olefins are
known in a anti-Markovnikov fashion using soluble and
heterogenised gold complexes, see: j) A. Corma, C.
Gonzꢆlez-Arellano, M. Iglesias, F. Sꢆnchez, Appl.
Catal. A: General 2010, 375, 49; and also using thiolate
[19] a) S. Enthaler, K. Junge, M. Beller, Angew. Chem.
2008, 120, 3363; Angew. Chem. Int. Ed. 2008, 47, 3317;
b) K. Junge, K. Schroder, M. Beller, Chem. Commun.
2011, 47, 4849; c) C. Bolm, J. Legros, J. Le Paih, L.
Zani, Chem. Rev. 2004, 104, 6217.
[20] J. Kischel, I. Jovel, K. Mertins, A. Zapf, M. Beller, Org.
Lett. 2006, 8, 19.
[21] B. Moreau, J. Y. Wu, T. Ritter, Org. Lett. 2009, 11, 337.
[22] J. Michaux, V. Terrasson, S. Marque, J. Wehbe, D. Prim,
J.-M. Campagne, Eur. J. Org. Chem. 2007, 2007, 2601.
[23] K. Schrçder, S. Enthaler, B. Join, K. Junge, M. Beller,
Adv. Synth. Catal. 2010, 352, 1771.
[24] J. Kischel, D. Michalik, A. Zapf, M. Beller, Chem.
Asian J. 2007, 2, 909.
[25] J. R. Cabrero-Antonino, A. Leyva-Pꢀrez, A. Corma,
Adv. Synth. Catal. 2010, 352, 1571.
[26] T. Hashimoto, S. Kutubi, T. Izumi, A. Rahman, T. Kita-
mura, J. Organomet. Chem. 2011, 696, 99.
[27] K. M. Driller, H. Klein, R. Jackstell, M. Beller, Angew.
Chem. 2009, 121, 6157; Angew. Chem. Int. Ed. 2009, 48,
6041.
[28] K. M. Driller, S. Prateeptongkum, R. Jackstell, M.
Beller, Angew. Chem. 2011, 123, 558; Angew. Chem.
Int. Ed. 2011, 50, 537.
[29] a) K. Bera, S. Sarkar, S. Biswas, S. Maiti, U. Jana, J.
Org. Chem. 2011, 76, 3539; b) M. Beller, J. Seayad, A.
Tillack, H. Jiao, Angew. Chem. 2004, 116, 3448; Angew.
Chem. Int. Ed. 2004, 43, 3368.
[30] a) S. L. Buchwald, C. Bolm, Angew. Chem. 2009, 121,
5694; Angew. Chem. Int. Ed. 2009, 48, 5586; b) R. B.
Bedford, M. Nakamura, N. J. Gower, M. F. Haddow,
M. A. Hall, M. Huwe, T. Hashimoto, R. A. Okopie,
Tetrahedron Lett. 2009, 50, 6110; c) C. Vargas, A. M.
Balu, J. M. Campelo, C. Gonzꢆlez-Arellano, R. Luque,
A. A. Romero, Current Org. Synth. 2010, 7, 568.
[31] a) S. Antoniotti, V. Dalla, E. DuÇach, Angew. Chem.
2010, 122, 8032; Angew. Chem. Int. Ed. 2010, 49, 7860;
b) A. Leyva-Pꢀrez, A. Corma, J. Org. Chem. 2009, 74,
2067; c) For a review see: L. Coulombel, F. Grau, M.
Weꢇwer, I. Favier, X. Chaminade, A. Heumann, J. C.
Bayꢈn, P. A. Aguirre, E. DuÇach, Chem. Biodiversity,
2008, 5, 1070.
complexes of copper(I), (IPr)CuACTHNUTRGNEUNG(SPh), see: k) S. A.
Delp, C. Munro-Leighton, L. A. Goj, M. A. Ramirez,
T. B. Gunnoe, J. L. Petersen, P. D. Boyle, Inorg. Chem.
2007, 46, 2365.
[10] a) T. Posner, Ber. dtsch. chem. Ges. 1907, 40, 4788;
b) V. N. Ipatieff, H. Pines, B. S. Friedman, J. Am.
Chem. Soc. 1938, 60, 2731.
[11] F. Wolf, H. Finke, Z. Chem. 1972, 60, 2731.
[12] C. G. Screttas, M. Micha-Screttas, J. Org. Chem. 1979,
44, 713.
[13] T. Mukaiyama, T. Izawa, K. Saigo, H. Takei, Chem.
Lett. 1973, 355.
[14] M. Belley, R. Zamboni, J. Org. Chem. 1989, 54, 1230.
[15] For non-activated olefins (intra- and intermolecular hy-
drothiolation), see: a) M. Weiwer, L. Coulombel, E.
DuÇach, Chem. Commun. 2006, 332.
[16] a) K. Kano, M. Takeuchi, S. Hashimoto, Z. Yoshida,
Chem. Lett. 1990, 1381; b) M. Takeuchi, H. Shimakoshi,
K. Kano, Organometallics 1994, 13, 1208.
[17] S. Kanagasabapathy, A. Sudalai, B. C. Benicewicz, Tet-
rahedron Lett. 2001, 42, 3791. These results could not
be reproduced in our laboratory.
[32] Copies of NMR spectra can be found in the Supporting
Information. In particular cases, minor amounts of the
anti-Markovnikov isomer could not be separated chro-
matographically.
[18] a) For gold(I)-mediated Markovnikov hydrothiolation
of conjugated olefins, see: b) C. Brouwer, R. Rahaman,
C. He, Synlett 2007, 1785. For gold
(III)-catalysed regio-
[33] a) K. Kohno, K. Nakagawa, T. Yahagi, J.-C. Choi, H.
Yasuda, T. Sakakura, J. Am. Chem. Soc. 2009, 131,
2784; b) C. Baleiz¼o, M. N. Berberan-Santos, Chem-
PhysChem 2009, 10, 199.
[34] a) G. L. Hamilton, E. J. Kang, M. Mba, F. D. Toste, Sci-
ence 2007, 317, 496; b) L. Ratjen, P. Garcꢁa-Garcꢁa, F.
Lay, M. E. Beck, B. List, Angew. Chem. 2011, 123, 780;
Angew. Chem. Int. Ed. 2011, 50, 754.
specific intermolecular hydrothiolation of allenes, see:
c) Menggenbateer, M. Narsireddy, G. Ferrara, N. Nishi-
na, T. Jin, Y. Yamamoto, Tetrahedron Lett. 2010, 51,
4627. For rhodium-catalysed Markovnikov hydrothiola-
tion of alkynes, see: d) J. Yang, A. Sabarre, L. R.
Fraser, B. O. Patrick, J. A. Love, J. Org. Chem. 2009,
74, 182.
Adv. Synth. Catal. 2012, 354, 678 – 687
ꢃ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
687