Organic Letters
Letter
(2) (a) Naeimi, H.; Salimi, F.; Rabiei, K. J. Mol. Catal. A: Chem.
2006, 260, 100. (b) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.;
Ellman, J. A. J. Org. Chem. 1999, 64, 1278. (c) Hadjipavlou-Litina, D.
J.; Geronikaki, A. A. Drug Des. Discovery 1998, 15, 199. (d) Varma, R.
S.; Dahiya, R.; Kumar, S. Tetrahedron Lett. 1997, 38, 2039.
(e) Westheimer, F. H.; Taguchi, K. J. Org. Chem. 1971, 36, 1570.
(f) Schiff, H. Justus Liebigs Ann. Chem. 1864, 131, 118.
(3) (a) Chen, B.; Wang, L.; Gao, S. ACS Catal. 2015, 5, 5851.
(b) Largeron, M. Eur. J. Org. Chem. 2013, 2013, 5225. (c) Patil, R. D.;
Adimurthy, S. Asian J. Org. Chem. 2013, 2, 726.
(4) (a) Samuelsen, S. V.; Santilli, C.; Ahlquist, M. S. G.; Madsen, R.
Chem. Sci. 2019, 10, 1150. (b) Azizi, K.; Akrami, S.; Madsen, R. Chem.
- Eur. J. 2019, 25, 6439. (c) Fertig, R.; Irrgang, T.; Freitag, F.; Zander,
J.; Kempe, R. ACS Catal. 2018, 8, 8525. (d) Zhang, C.; Zhao, P.;
Zhang, Z.; Zhang, J.; Yang, P.; Gao, P.; Gao, J.; Liu, D. RSC Adv.
converts to its resonance structure D, which is a persistent free
radical.20a Intermediate D couples with intermediate A to
generate intermediate E, which undergoes electron rearrange-
ment as well as couples with another A to furnish the product
3aa and intermediate F. Finally, radical F grabs a hydrogen
atom from 1a to provide the product 4aa and regenerate
intermediate C.
In summary, we have developed an iron-catalyzed nitrene
transfer reaction of 4-hydroxystilbenes with aryl azides, which
provides a convenient and novel way of synthesizing imines in
moderate to excellent yields through CC bond cleavage of
alkenes. Notably, the substrates, 4-hydroxystilbene derivatives,
are readily prepared from the corresponding styrenes via a Pd-
catalyzed Heck−Matsuda reaction. The protocol employs the
cheap and readily available iron salt FeCl2 as the catalyst and
generates nitrogen gas as the sole byproduct. Furthermore, due
to the simple and nonoxidizing reaction conditions, the
methodology is compatible with various reactions involving
imines such as Povarov reaction,1g Strecker reaction,1i and so
on; thus, a series of sequential one-pot transformations have
been achieved. Further studies toward synthetic utility and
mechanism are now underway in our laboratory.
̈
2017, 7, 47366. (e) Mastalir, M.; Glatz, M.; Gorgas, N.; Stoger, B.;
Pittenauer, E.; Allmaier, G.; Veiros, L. F.; Kirchner, K. Chem. - Eur. J.
2016, 22, 12316. (f) Mukherjee, A.; Nerush, A.; Leitus, G.; Shimon,
L. J. W.; Ben David, Y.; Espinosa Jalapa, N. A.; Milstein, D. J. Am.
Chem. Soc. 2016, 138, 4298. (g) Gunanathan, C.; Milstein, D. Science
2013, 341, 249. (h) Zhang, G.; Hanson, S. K. Org. Lett. 2013, 15, 650.
(i) He, L.-P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-W.
Organometallics 2012, 31, 5208. (j) Maggi, A.; Madsen, R.
Organometallics 2012, 31, 451. (k) Gnanaprakasam, B.; Zhang, J.;
Milstein, D. Angew. Chem., Int. Ed. 2010, 49, 1468.
(5) (a) Li, H.; Al-Dakhil, A.; Lupp, D.; Gholap, S. S.; Lai, Z.; Liang,
L.-C.; Huang, K.-W. Org. Lett. 2018, 20, 6430. (b) Dai, H.; Guan, H.
ACS Catal. 2018, 8, 9125. (c) Chakraborty, S.; Leitus, G.; Milstein, D.
Angew. Chem., Int. Ed. 2017, 56, 2074. (d) Chakraborty, S.; Milstein,
D. ACS Catal. 2017, 7, 3968. (e) Long, J.; Shen, K.; Li, Y. ACS Catal.
2017, 7, 275. (f) Kim, D.; Kang, B.; Hong, S. H. Org. Chem. Front.
2016, 3, 475. (g) Choi, J.-H.; Prechtl, M. H. G. ChemCatChem 2015,
7, 1023. (h) Long, J.; Yin, B.; Li, Y.; Zhang, L. AIChE J. 2014, 60,
3565. (i) Chakraborty, S.; Berke, H. ACS Catal. 2014, 4, 2191.
(j) Srimani, D.; Feller, M.; Ben-David, Y.; Milstein, D. Chem.
Commun. 2012, 48, 11853.
(6) (a) Bawari, D.; Goswami, B.; Sabari, V. R.; Thakur, S. K.; Varun
Tej, R. V.; Roy Choudhury, A.; Singh, S. Dalton Trans 2018, 47, 6274.
(b) Baron, M.; Battistel, E.; Tubaro, C.; Biffis, A.; Armelao, L.;
Rancan, M.; Graiff, C. Organometallics 2018, 37, 4213. (c) Aldrich, K.
E.; Odom, A. L. Organometallics 2018, 37, 4341. (d) Davaasuren, B.;
Emwas, A.-H.; Rothenberger, A. Inorg. Chem. 2017, 56, 9609.
(e) Fujita, K.-i.; Fujii, A.; Sato, J.; Yasuda, H. Synlett 2016, 27, 1941.
(7) For the selected reviewes on ozonolysis of the CC bond, see:
(a) Fisher, T. J.; Dussault, P. H. Tetrahedron 2017, 73, 4233.
(b) Wan, J.-P.; Gao, Y.; Wei, L. Chem. - Asian J. 2016, 11, 2092.
(c) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(d) Spannring, P.; Bruijnincx, P. C. A.; Weckhuysen, B. M.; Klein
Gebbink, R. J. M. Catal. Sci. Technol. 2014, 4, 2182. (e) Rajagopalan,
A.; Lara, M.; Kroutil, W. Adv. Synth. Catal. 2013, 355, 3321.
(f) Johnson, D.; Marston, G. Chem. Soc. Rev. 2008, 37, 699. (g) Van
Ornum, S. G.; Champeau, R. M.; Pariza, R. Chem. Rev. 2006, 106,
2990.
(8) For the selected reviewes on olefin metathesis, see:
(a) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110,
1746. (b) Samojłowicz, C.; Bieniek, M.; Grela, K. Chem. Rev. 2009,
109, 3708. (c) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760.
(d) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748. (e) Chauvin,
Y. Angew. Chem., Int. Ed. 2006, 45, 3740.
(9) For the examples of CC bond cleavage to access nitriles, see:
(a) Chen, W. L.; Wu, S. Y.; Mo, X. L.; Wei, L. X.; Liang, C.; Mo, D. L.
Org. Lett. 2018, 20, 3527. (b) Maity, P.; Kundu, D.; Ghosh, T.; Ranu,
B. C. Org. Chem. Front. 2018, 5, 1586. (c) Liu, Q.; Fang, B.; Bai, X.;
Liu, Y.; Wu, Y.; Xu, G.; Guo, C. Tetrahedron Lett. 2016, 57, 2620.
(d) Zong, X.; Zheng, Q.-Z.; Jiao, N. Org. Biomol. Chem. 2014, 12,
1198. (e) Xu, J. H.; Jiang, Q.; Guo, C. C. J. Org. Chem. 2013, 78,
11881. (f) Wang, T.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 11692.
(10) For the examples on oxidative cleavage of the CC bond to
form a CN bond, see: (a) Karpe, A. S.; Sathe, P. A.; Patil, P.; Patil,
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures, characterization data, and
copies of NMR spectra for all new products (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the Program of the Professor of Special
Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning, Shanghai Engineering Research Center of
Green Energy Chemical Engineering (18DZ2254200), the
National Natural Science Foundation of China (21402119,
21772122), and Shanghai Rising-Star Program
(16QA1403100) is greatly appreciated.
REFERENCES
■
(1) (a) Hummel, J. R.; Boerth, J. A.; Ellman, J. A. Chem. Rev. 2017,
117, 9163. (b) Cao, M.-H.; Green, N. J.; Xu, S.-Z. Org. Biomol. Chem.
2017, 15, 3105. (c) Eftekhari-Sis, B.; Zirak, M. Chem. Rev. 2017, 117,
8326. (d) Schrittwieser, J. H.; Velikogne, S.; Kroutil, W. Adv. Synth.
Catal. 2015, 357, 1655. (e) Pellissier, H. Adv. Synth. Catal. 2014, 356,
1899. (f) Li, W.; Zhang, X. Top. Curr. Chem. 2013, 343, 103.
(g) Fochi, M.; Caruana, L.; Bernardi, L. Synthesis 2014, 46, 135.
(h) Noble, A.; Anderson, J. C. Chem. Rev. 2013, 113, 2887. (i) Wang,
J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947. (j) Kobayashi, S.;
Mori, Y.; Fossey, J. S.; Salter, M. M. Chem. Rev. 2011, 111, 2626.
(k) Gupta, K. C.; Sutar, A. K. Coord. Chem. Rev. 2008, 252, 1420.
E
Org. Lett. XXXX, XXX, XXX−XXX