10.1002/chem.201905445
Chemistry - A European Journal
COMMUNICATION
[5] a) S. M. Banik, J. W. Medley, E. N. Jocobsen, J. Am. Chem. Soc. 2016,
138, 5000; b) I. G. Molnár, R. Gilmour, J. Am. Chem. Soc. 2016, 138,
5004.
In summary, we have reported a novel strategy for 1,2-
dihalogenation of alkenes via sequential nucleophilic halide
addition and electrophilic halogenation. By trapping the in situ
generated unstable α-trifluoromethyl carbanion intermediates
derived from the nucleophilic fluorination of electron-poor gem-
difluoroalkenes, this fluorohalogenation of gem-difluoroalkenes
with electrophilic haloalkynes affords various useful α-
[6]
a) F. Scheidt, M. Schäfer, J. C. Sarie, C. G. Daniliuc, J. J. Molloy, R.
Gilmour, Angew. Chem. Int. Ed. 2018, 57, 16431; Angew. Chem. 2018,
130, 16669; b) B. Zhou, M. K. Haj, E. N. Jacobsen, K. N. Houk, X.-S.
Xue, J. Am. Chem. Soc. 2018, 140, 15206; c) M. K. Haj, S. M. Banik, E.
N. Jacobsen, Org. Lett. 2019, 21, 4919.
trifluoromethyl halides in high yields.
A pesticidal active
[7]
[8]
a) K. Muller, C. Faeh, F. Diederich, Science 2007, 317, 1881; b) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008,
37, 320; c) W. K. Hagmann, J. Med. Chem. 2008, 51, 4359; d) T. Furuya,
A. S. Kamlet, T. Ritter, Nature 2011, 473, 470.
compound and various attractive trifluromethylated molecules
could be smoothly synthesized from these obtained α-
trifluoromethyl halides. Furthermore, a one pot, three steps
transformation was developed via the processes of
fluorobromination of gem-difluoroalkenes with haloalkynes,
nucleophilic azidation of the generated α-trifluoromethyl bromides,
and the regioselective Click reaction between the newly in situ
formed α-trifluoromethyl azides and the alkyne byproducts,
delivering various α-trifluoromethyl N-1-triazoles in high yields.
Investigation of the asymmetric variants and exploration of this
novel strategy in other 1,2-dihalogenation of alkenes are currently
underway in our laboratory.
a) Fluorinated Heterocyclic Compounds: Synthesis Chemistry, and
Applications (Ed.: V. A. Petrov), Wiley, Hoboken, 2009; b) J. Nie, H.-C.
Guo, D. Cahard, J.-A. Ma, Chem. Rev. 2011, 111, 455; c) J. Charpentier,
N. Fruh, A. Togni, Chem. Rev. 2015, 115, 650; d) C. Alonso, E. M. de
Marigorta, G. Rubiales, F. Palacios, Chem. Rev. 2015, 115, 1847; e) X.
Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 2015, 115, 683; f) P. A.
Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin,
Chem. Rev. 2015, 115, 9073; g) M. G. Campbell, T. Ritter, Chem. Rev.
2015, 115, 612; h) C. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765.
a) B. Gao, Y. Zhao, C. Ni, J. Hu, Org. Lett. 2014, 16, 102; b) B. Gao, Y.
Zhao, J. Hu, Angew. Chem. Int. Ed. 2015, 54, 638; Angew. Chem. 2015,
127, 648; c) P. Tian, C.-Q. Wang, S.-H. Cai, S. Song, L. Ye, C. Feng, T.-
P. Loh, J. Am. Chem. Soc. 2016, 138, 15869; d) H.-J. Tang, L.-Z. Lin, C.
Feng, T.-P. Loh, Angew. Chem. Int. Ed. 2017, 56, 9872; Angew. Chem.
2017, 129, 10004; e) H.-J. Tang, Y.-F. Zhang, Y.-W. Jiang, C. Feng, Org.
Lett. 2018, 20, 5190; f) P. E. Daniel, C. I. Onyeagusi, A. A. Ribeiro, K. Li,
S. J. Malcolmson, ACS Catal. 2019, 9, 205.
[9]
Acknowledgements ((optional))
The authors thank the National Program on Key Research
Project (2016YFA0602900), the National Natural Science
Foundation of China (21702064), the Pearl River S&T Nova
Program of Guangzhou (201806010138), and the Fundamental
Research Funds for the Central Universities (2019ZD19) for
financial support.
[10] a) B. V. Nguyen, D. J. Burton, J. Org. Chem. 1997, 62, 7758; b) H. Liu, L.
Ge, D.-X. Wang, N. Chen, C. Feng, Angew. Chem. Int. Ed. 2019, 58,
3918; Angew. Chem. 2019, 131, 3958; c) W.-J. Yoo, J. Kondo, J. A.
Rodrígueɀ-Santamaría, T. V. Q. Nguyen, S. Kobayashi, Angew. Chem.
Int. Ed. 2019, 58, 6772; Angew. Chem. 2019, 131, 6844.
[11] For the synthesis of α-trifluoromethyl halides: a) T. Okano, K. Ito, T. Ueda,
H. Muramatsu, J. Fluorine Chem. 1986, 32, 377; b) R. Anikumar, D. J.
Burton, J. Fluorine Chem. 2005, 126, 1174; c) T. Okano, H. Sugiura, M.
Fumoto, H. Matsubara, T. Kusukawa, M. Fujita, J. Fluorine Chem. 2002,
114, 91; b) Y. Yamuchi, S. Hara, H. Senboku, Tetrahedron 2010, 66,
473.
Keywords: dihalogenation • alkenes • fluorination • α-
trifluoromethyl carbanion • potassium fluoride
[1]
[2]
a) S. E. Denmark, W. E. Kuester, M. T. Burk, Angew. Chem. Int. Ed.
2012, 51, 10938; Angew. Chem. 2012, 125, 11098; b) R. M. Romero, T.
H. Wöste, K. Muñiz, Chem. Asian J. 2014, 9, 972; c) A. J. Cresswell, S.
T.-C. Eey, S. E. Denmark, Angew. Chem. Int. Ed. 2015, 54, 15642;
Angew. Chem. 2015, 127, 15866; d) M. L. Landry, N. Z. Burns, Acc.
Chem. Res. 2018, 51, 1260.
[12] For the applications of α-trifluoromethyl halides: a) Y. Liang, G. C. Fu,
Angew. Chem. Int. Ed. 2015, 54, 9047; Angew. Chem. 2015, 127, 9175;
b) Y. Liang, G. C. Fu, J. Am. Chem. Soc. 2015, 137, 9523; c) T. Fan,
W.-D. Meng, X. Zhang, Beilstein J. Org. Chem. 2017, 13, 2610; d) N.
Punna, K. Harada, N. Shibata, Chem. Commun. 2018, 54, 7171; e) A.
Varenikov, M. Gandelman, J. Am. Chem. Soc. 2019, 141, 10994; f) W.
Huang, M. Hu, X. Wan, Q. Shen, Nat. Commun. 2019, DOI:
10.1038/s41467-019-10851-4.
a) S. A. Snyder, Z.-Y. Tang, R. Gupta, J. Am. Chem. Soc. 2009, 131,
5744; b) G. W. Gribble, Naturally Occurring Organohalogen
Compounds-A Comprehensive Update; Springer-Verlag: Wien, Austria,
2010; c) C. Nilewski, E. M. Carreira, Eur. J. Org. Chem. 2012, 2012,
1685; d) W.-J. Chung, C. D. Vanderwal, Acc. Chem. Res. 2014, 47,
718; e) W.-J. Chung, C. D. Vanderwal, Angew. Chem. Int. Ed. 2016, 55,
4396; Angew. Chem. 2016, 128, 4470; f) M. L. Landry, D. X. Hu, G. M.
McKenna, N. Z. Burns, J. Am. Chem. Soc. 2016, 138, 5150; g) A. M.
Bailey, S. Wolfrum, E. M. Carreira, Angew. Chem. Int. Ed. 2016, 55,
639; Angew. Chem. 2016, 128, 649; h) A. J. Burckle, B. Gál, F. J. Seidl,
V. H. Vasilev, N. Z. Burns, J. Am. Chem. Soc. 2017, 139, 13562; i) P.
Sondermann, E. M. Carreira, J. Am. Chem. Soc. 2019, 141, 10510.
[13] P. J. Riss, F. I. Aigbirhio, Chem. Commun. 2011, 47, 11873.
[14]
a) G. Pupo, F. Ibba, D. M. H. Ascough, A. C. Vicini, P. Ricci, K. E.
Christensen, L. Pfeifer, J. R. Morphy, J. M. Brown, R. S. Paton, V.
Gouverneur, Science 2018, 360, 638; b) G. Pupo, A. C. Vicini, D. M. H.
Ascough, F. Ibba, K. E. Christensen, A. L. Thompson, J. M. Brown, R. S.
Paton, V. Gouverneur, J. Am. Chem. Soc. 2019, 141, 2878; c) G.
Laudadio, A. A. Bartolomeu, L. M. H. M. Verwijlen, Y. Cao, K. T. Oliveira,
T. Noël, J. Am. Chem. Soc. 2019, 141, 11832.
[15]
[16]
a) W. Wu, H. Jiang, Acc. Chem. Res. 2014, 47, 2483; b) H. Jiang, C.
Zhu, W. Wu, Haloalkyne Chemsitry, Springer: Berlin/Heidelberg, 2016.
a) H. Yoshida, Y. Asatsu, Y. Mimura, Y. Ito, J. Ohshita, K. Takaki,
Angew. Chem. Int. Ed. 2011, 50, 9676; Angew. Chem. 2011, 123, 9850;
b) Y. Zeng, L. Zhang, Y. Zhao, C. Ni, J. Hu, J. Am. Chem. Soc. 2013,
135, 2955; c) Y. Zeng, J. Hu, Org. Lett. 2016, 18, 856; d) M. Zhou, C.
Ni, Y. Zeng, J. Hu, J. Am. Chem. Soc. 2018, 140, 6801.
[3] a) I. Roberts, G. E. Kimball, J. Am. Chem. Soc. 1937, 59, 947; b) K. C.
Nicolaou, N. L. Simmons, Y. Ying, P. M. Heretsch, J. S. Chen, J. Am.
Chem. Soc. 2011, 133, 8134; c) C. K. Tan, Y.-Y. Yeung, Chem.
Commun. 2013, 49, 7985; d) D. X. Hu, G. M. Shibuya, N. Z. Burns, J.
Am. Chem. Soc. 2013, 135, 12960; e) D. X. Hu, F. J. Seidl, C. B. Bucher,
N. Z. Burns, J. Am. Chem. Soc. 2015, 137, 3795; f) C. Bucher, R. M.
Deans, N. Z. Burns, J. Am. Chem. Soc. 2015, 137, 12784; g) B.
Soltanzadeh, A. Jaganathan, Y. Yi, H. Yi, R. J. Staples, B. Borhan, J.
Am. Chem. Soc. 2017, 139, 2132.
[17] Y. Li, X. Liu, D. Ma, B. Liu, H. Jiang, Adv. Synth. Catal. 2012, 354, 2683.
[18]
V. H. Jadhav, H. J. Jeong, W. Choi, D. W. Kim. Chem. Eng. J. 2015,
270, 36.
[19] P. R. Jr Leplae, T. Barton, X. Gao, J. Hunter, W. C. Lo, J. Boruwa, R.
[4] a) A. Onoe, S. Uemura, M. Okano, Bull. Chem. Soc. Jpn. 1976, 49, 345;
b) R. Rodebaugh, J. S. Debenham, B. Fraser-Reid, J. P. Snyder, J. Org.
Chem. 1999, 64, 1758.
Tangirala, G. B. Watson, J. Herbert, US 20170210723 A1, 2017.
4
This article is protected by copyright. All rights reserved.