A. Shibata et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2681–2683
2683
presence of Mg2+. This indicates that the branched oligonucleotide
5'-Flu-d(GTGGTGGGTGGT)
3'-Dab-d(GAGGAGGGAGGA)
OH
OH
XI forms a triplex with the target RNA VIII in the presence of Mg2+
XI
but not in the absence of Mg2+
.
5'-Flu-d(GZGGZGGGZGGT)
3'-Dab-d(GAGGAGGGAGGA)
OH
OH
XII
When the branched oligonucleotide XII containing the amino-
methyl residues was used, the fluorescence intensities of the solu-
tions decreased as the concentrations of the first strand VIII
increased even in the absence of Mg2+, and plateaued near a 1:1
branched oligonucleotide XII and first strand VIII ratio (Fig. 4, bot-
tom graph). This proved that the branched oligonucleotide XII,
which is modified with the aminomethyl residues, could form an
antiparallel triplex even in the absence of a divalent cation such
VIII
5'-r(CUCCUCCCUCCU)-3'
XI + VIII
100
80
60
40
20
0
as Mg2+
.
In conclusion, we have demonstrated the synthesis of branched
oligonucleotides containing aminomethyl residues, and found that
these oligonucleotides have a high affinity for single-stranded DNA
or RNA in buffer solutions with and without MgCl2. Thus, these oli-
gonucleotides would be useful as antisense oligonucleotides for
targeting single-stranded RNA through triplex formation.
2+
without Mg
2+
with Mg
0
0.1
0.2 0.3 0.4 0.5 0.6
Acknowledgments
XII + VIII
100
80
60
40
20
0
This study was supported in part by a Grant-in-Aid from the
Koshiyama Research Grand and a Grant-in-Aid for Scientific Re-
search (C) from the Japan Society for the Promotion of Science to Y.U.
Supplementary data
2+
without Mg
Supplementary data associated with this article can be found, in
2+
with Mg
0
0.1
concentration of 1st strand (μM)
0.2 0.3 0.4 0.5 0.6
References and notes
1. Carninci, P.; Kasukawa, T.; Katayama, S.; Gough, J.; Frith, M. C., et al Science
2005, 309, 1559.
2. Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M., et al Science
2005, 309, 1564.
Figure 4. Profiles of the fluorescence intensities versus the first strand concentra-
tions. Experiments were performed in Tris–HCl buffer solution (15 mM, pH 7.0)
containing 25 mM NaCl in the presence or absence of 5.0 mM MgCl2. The
3. Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K. G.; Tuschl, T.; Manoharan, M.;
Stoffel, M. Nature 2005, 438, 685.
concentrations of the labeled oligonucleotides (XI and XII) were 0.30 lM. Excitation
wavelength: 485 nm. Emission wavelength: 535 nm.
4. Thuong, N. T.; Hélène, C. Angew. Chem., Int. Ed. Engl. 1993, 32, 666.
5. Ueno, Y.; Takeba, M.; Mikawa, M.; Matsuda, A. J. Org. Chem. 1999, 64, 1211.
6. Ueno, Y.; Mikawa, M.; Hoshika, S.; Matsuda, A. Bioconjugate Chem. 2001, 12,
635.
7. Ueno, Y.; Shibata, A.; Matsuda, A.; Kitade, Y. Bioconjugate Chem. 2003, 14, 684.
8. Rajeev, K. G.; Jadhav, V. R.; Ganesh, K. N. Nucleic Acids Res. 1997, 25, 4187.
9. Cuenoud; Casset, F.; Hüsken, D.; Natt, F.; Wolf, R. M.; Altmann, K. H.; Martin, P.;
Moser, H. E. Angew. Chem., Int. Ed. 1998, 37, 1288.
10. Bijapur, J.; Keppler, M. D.; Bergqvist, S.; Brown, T.; Fox, K. R. Nucleic Acids Res.
1999, 27, 1802.
11. Ueno, Y.; Tomino, K.; Sugimoto, I.; Matsuda, A. Tetrahedron 2000, 56, 7903.
12. Atsumi, N.; Ueno, Y.; Kanzaki, M.; Shuto, S.; Matsuda, A. Bioorg. Med. Chem.
2001, 10, 2933.
13. Puri, N.; Majumdar, A.; Cuenoud, B.; Natt, F.; Matin, P.; Boyd, A.; Miller, P. S.;
Seidman, M. M. Biochemistry 2001, 41, 7716.
14. Brazier, J. A.; Shibata, T.; Townsley, J.; Taylor, B. F.; Frary, E.; Williams, N. H.;
Williams, D. M. Nucleic Acids Res. 2005, 33, 1362.
15. Radhakrishnan, I.; Patel, D. J. Structure 1993, 1, 135.
16. Giovannangeli, C.; Rougée, M.; Garestier, T.; Thuong, N. T.; Hélène, C. Proc. Natl.
Acad. Sci. U.S.A. 1992, 89, 8631.
17. Malkov, V. A.; Voloshin, O. N.; Soyfer, V. N.; Frank-Kamenetskii, M. D. Nucleic
Acids Res. 1993, 21, 585.
branched oligonucleotide X and the target DNA I in the absence of
Mg2+ (Fig. S4).
In order to confirm the formation of the triplex, we next per-
formed fluorescence resonance energy transfer (FRET) analysis.
For this, we synthesized the branched oligonucleotides XI and
XII, which were modified with fluorescein (Flu) at the 50-end and
with dabcyl (Dab) at the 30-end as a quencher (Fig. 4). When the
branched oligonucleotide XI was mixed with the target RNA VIII
in the absence of Mg2+, the fluorescence intensities of the solutions
were almost the same irrespective of the concentrations of the first
strand VIII (Fig. 4, top graph). On the other hand, the fluorescence
intensities of the solutions decreased as the concentrations of the
first strand VIII increased, and plateaued at a 1:1 branched oligo-
nucleotide XI and first strand VIII ratio when the branched oligo-
nucleotide XI was mixed with the target RNA VIII in the