2-aminoaryl ketones such as 2-amino-5-chloro-benzophenone
and 2-aminonicotinaldehyde reacted smoothly with an appro-
priately substituted carbonyl derivative containing a reactive
a-methylene group to produce a wide range of polysubstituted
quinoline derivatives (Table 2, entries 6, 7, 14, 15, 19, 20, 29
and 30). In all cases, the results showed the excellent reactivity
of T3Ps under these conditions. The expected products were
obtained with excellent purity and yields (85–96%) by recrys-
tallization or precipitation and proved to be much better
than those obtained using the classical methods reported in
the literature. In general, the reaction is very clean, rapid and
efficient.
Notes and references
1 (a) R. D. Larsen, E. G. Corley, A. O. King, J. D. Carrol, P. Davis,
T. R. Verhoeven, P. J. Reider, M. Labelle, J. Y. Gauthier,
Y.-B. Xiang and R. J. Zamboni, J. Org. Chem., 1996, 61, 3398;
(b) J. P. Michael, Nat. Prod. Rep., 1997, 14, 605; (c) G. Roma,
M. D. Braccio, G. Grossi, F. Mattioli and M. Ghia, Eur. J. Med.
Chem., 2000, 35, 1021.
2 M. E. Welsch, S. A. Synder and B. R. Stockwell, Curr. Opin. Chem.
Biol., 2010, 14, 347.
3 (a) B. Kalluraya and S. Sreenivasa, Farmaco, 1998, 53, 399;
(b) D. Dube, M. Blouin, C. Brideau, C.-C. Chan, S. Desmarais,
D. Ethier, J.-P. Falgueyret, R. W. Friesen, M. Girard, Y. Girard,
J. Guay, D. Riendeau, P. Tagari and R. N. Young, Bioorg. Med.
Chem. Lett., 1998, 8, 1255.
4 For representative reviews, see: (a) J. P. Michael, Nat. Prod. Rep.,
2007, 24, 223; (b) J. P. Michael, Nat. Prod. Rep., 2005, 22, 627;
(c) J. P. Michael, Nat. Prod. Rep., 2004, 21, 650.
5 (a) I. Saito, S. Sando and K. Nakatani, Bioorg. Med. Chem., 2001,
9, 2381; (b) C. He and S. J. Lippara, J. Am. Chem. Soc., 2001,
40, 1414; (c) K. Nakatani, S. Sando and I. Saito, J. Am. Chem.
Soc., 2000, 122, 2172.
6 (a) M. Abass, Heterocycles, 2005, 65, 901; (b) C. S. Cho, B. H. Oh,
J. S. Kim, T.-J. Kim and S. C. Shim, Chem. Commun., 2000, 1885;
(c) B. Jiang and Y.-G. Si, J. Org. Chem., 2002, 67, 9449;
(d) H. Skraup, Ber., 1880, 13, 2086; (e) R. H. F. Mansake and
M. Kulka, Org. React., 1953, 7, 59; (f) P. Friedlander, Ber. Dtsch.
Chem. Ges., 1882, 15, 2572; (g) C.-C. Cheng and S.-J. Yan, Org.
React., 1982, 28, 37; (h) J. Marco-Contelles, E. Perez-Mayoral,
A. Samadi, M. Do Carmo Carreiras and E. Soriano, Chem. Rev.,
2009, 109, 2652; (i) L. Zhang and J. Wu, Adv. Synth. Catal., 2007,
349, 1047 and references cited therein.
In conclusion, we have introduced a highly efficient and
robust method for the Friedlander annulation with T3Ps
under mild conditions. This method displayed high functional
group tolerance and offers a simple and very efficient route for
the synthesis of a wide range of polysubstituted, polycyclic
quinolines and naphthyridines. This method avoids the use
of hazardous acidic or basic reagents and harsh reaction
conditions. The advantages of this protocol include short
reaction times, excellent yields, simple work-up procedure,
cost-effectiveness, environmentally eco-friendly benign and
simple experimental operations. These advantages make this
methodology attractive for large scale synthesis.21 The access
to other heterocycles by using T3Ps is currently under
investigation in our laboratory.
7 (a) H. Wissmann and H.-J. Kleiner, Angew. Chem., Int. Ed. Engl.,
1980, 19, 133; (b) R. Escher and P. Bunning, Angew. Chem., Int.
Ed. Engl., 1986, 25, 277.
The authors are grateful to the institutions that supported
their laboratory (Inserm, Universite de Lille2, Institut Pasteur
de Lille, USTL).
8 Coupling Agent T3Ps—The Water Scavenger www.archimica.
com/PDF/ARCHIMICA_T3P_Brochure.pdf.
9 (a) A. Meudt, S. Scherer and S. Nerdinger, PCT Int. Appl., WO
2005070879, 2005 (Chem. Abstr., 2005, 143, 172649);
(b) J. K. Augustine, R. N. Atta, B. K. Ramappa and
C. Boodappa, Synlett, 2009, 3378; (c) A. Meudt, S. Scherer and
C. Bohm, PCT Int. Appl., WO 2005123632, 2005 (Chem. Abstr.,
2005, 144, 69544); (d) F. Scaravelli, S. Bacchi, L. Massari,
O. Curcuruto, P. Westerduin and W. Maton, Tetrahedron Lett.,
2010, 51, 5154; (e) A. Meudt, S. Scherer and C. Bohm, PCT Int.
Appl., WO 2005102978, 2005, (Chem. Abstr., 2005, 143, 440908);
(f) F. Burkhart, M. Hoffmann and H. Kessler, Angew. Chem., Int.
Ed. Engl., 1997, 36, 1191; (g) N. N. Basavaprabhu, R. S. Lamani
and V. V. Sureshbabu, Tetrahedron Lett., 2010, 51, 3002;
(h) B. Vasantha, H. P. Hemantha and V. V. Sureshbabu, Synthesis,
2010, 2990; (i) J. K. Augustine, R. Kumar, A. Bombrun and
A. B. Mandal, Tetrahedron Lett., 2011, 52, 1074.
Experimental
¨
General procedure for Friedlander reaction promoted by
propylphosphonic anhydride (T3Ps)
To a mixture of 2-aminoaryl ketone (0.5 mmol) and ketone
(0.5 mmol) was added T3Ps (50% in EtOAc) (0.5 mmol) in
drops. The mixture was heated to 60 1C without added solvent
for 0.5–1 h under air. After completion of the reaction
(monitored by LC-MS), water (3 ml) was added to the reaction
mixture and was shaken to dissolve the T3Ps. The crude
product was easily purified and isolated by recrystallization
from hot methanol (2 ml) for more purification to give the
pure polysubstituted quinolines. In all cases, the resulting
products were isolated in total purity, as determined by
LC-MS, and afforded analytically pure products in excellent
to good yields in 85–96% as a solid.
10 S. Glaldiali, G. Chelucci, M. S. Mudadu, M. A. Gastaut and
R. P. Thummel, J. Org. Chem., 2001, 66, 400.
11 P. G. Dormer, K. K. Eng, R. N. Farr, G. R. Humphrey,
J. C. McWilliam, P. J. Reider, J. W. Sager and R. P. Volante,
J. Org. Chem., 2003, 68, 567.
12 E. A. Fehnel, J. Heterocycl. Chem., 1967, 4, 565.
13 (a) D. R. Sliskovic, J. A. Picard, W. H. Roark, B. D. Roth,
E. Ferguson, B. R. Krause, R. S. Newton, C. Sekerke and
M. K. Shaw, J. Med. Chem., 1991, 34, 367; (b) S. S. Palimkar,
S. A. Siddiqui, T. Daniel, R. J. Lahoti and K. V. Srinivasan,
J. Org. Chem., 2003, 68, 9371; (c) S. Ghassamipour and
A. R. Sardarian, Tetrahedron Lett., 2009, 50, 514; (d) M. Dabiri,
M. Baghbanzadeh and E. Arzroomchilar, Heterocycles, 2008,
75, 397; (e) A. Shaabani, E. Soleimani and Z. Badri, Synth.
Commun., 2007, 37, 629; (f) M. Shiri and M. A. Zolfigol, Tetra-
hedron, 2009, 65, 587.
14 J. K. Augustine, A. Bombrun and S. Venkatachaliah, Tetrahedron
Lett., 2011, 52, 6814.
15 (a) E. A. Fehnel, J. Org. Chem., 1966, 31, 2899; (b) E. A. Fehnel,
J. Heterocycl. Chem., 1967, 4, 565.
16 S. V. Ryabukhin, V. S. Naumchik, A. S. Plaskon,
O. O. Grygorenko and A. A. Tolmachev, J. Org. Chem., 2011,
76, 5774.
5,6-Dihydro-7-methylbenzo[c]acridine (24). Yield (115 mg,
1
94%); grey solid; mp = 92–94 1C; purity: 100%; H NMR
(300 MHz, CDCl3): d 8.68 (d, J = 7.5 Hz, 1H), 8.22 (d, J =
8.4 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.68 (dd, J = 9.6, 6.9
Hz, 1H), 7.53–7.38 (m, 3H), 7.28 (d, J = 7.5 Hz, 1H),
3.11–2.95 (m, 4H), 2.59 (s, 3H); 13C NMR (75 MHz, CDCl3):
d 152.62 (Cq), 146.88 (Cq), 139.77 (Cq), 139.11 (Cq), 135.28
(Cq), 130.25, 129.49, 128.40 (Cq), 128.26, 127.76 (Cq), 127.61,
127.25, 126.48, 125.83, 123.68, 28.17, 25.35, 13.91; rt (LCMS)
= 3.33 min (5 min, pH = 3.8); HRMS-ESI (m/z): [M + H]+
calcd for C18H16N 246.1283; found 246.1295.
c
872 New J. Chem., 2012, 36, 869–873
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012