Journal of the American Chemical Society
Communication
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details, compound characterization data, a CIF
file, and NMR spectra of the products. This material is available
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was partially supported by the MEXT, Grant-in-
Aid for Scientific Research (B) (20350045), a JSPS Research
Fellowship for Young Scientists (K.Y., 10438), and the Global
COE Program (Nagoya University).
REFERENCES
■
(1) (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129,
4160. (b) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156.
(2) For an excellent review, see: Xiao, J.; Li, X. Angew. Chem., Int. Ed.
2011, 50, 7226. For selected recent examples, see: (a) Davies, P. W.;
Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379. (b) Yeom,
H.-S.; So, E.; Shin, S. Chem.Eur. J. 2011, 17, 1764. (c) Jeong, J.;
Yeom, H.-S.; Kwon, O.; Shin, S. Chem.Asian J. 2011, 6, 1977.
(d) Ye, L.; He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236.
(e) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482.
(f) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-
S. Angew. Chem., Int. Ed. 2011, 50, 6911. (g) Patel, P.; Ramana, C. V.
Org. Biomol. Chem. 2011, 9, 7327. (h) Song, G.; Chen, D.; Su, Y.; Han,
K.; Pan, C.-L.; Jia, A.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7791.
(i) Chen, D.; Song, G.; Jia, A.; Li, X. J. Org. Chem. 2011, 76, 8488.
(3) (a) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 2528.
For cycloisomerization of alkynols, see: (b) McDonald, F. E. Chem.
Figure 1. (a) Proposed mechanism. (b) Calculated energy surface with
relative Gibbs free energies ΔG (kcal/mol) at 298 K.
Eur. J. 1999, 5, 3103. (b) Weyershausen, B.; Dotz, K. H. Eur. J. Inorg.
̈
Chem. 1999, 1057.
DMSO to the carbene carbon of the ruthenacycle to give
oxaruthenacyclohexatriene complex B with a DMS ligand
occurs in a concerted manner (transition state TS-AB) with an
activation barrier of ΔG⧧ = 18.3 kcal/mol, which is larger than
that of the oxidative cyclization step (ΔG⧧ = 14.1 kcal/mol;
Figure S3). After this rate-determining step, which is expected
to be highly exergonic (ΔG = −51.3 kcal/mol), extrusion of the
DMS ligand produces C, which is 12.4 kcal/mol higher in
energy. Subsequent isomerization of C generates γ-keto
carbene complex D via transition state TS-CD with a small
barrier of ΔG⧧ = 3.0 kcal/mol. The final furan ring closure from
D is expected to proceed via TS-DE with a similarly small
activation barrier of ΔG⧧ = 4.5 kcal/mol. The formation of η5-
furan complex E (with Ru−O, Ru−Cα, and Ru−Cβ distances
of 2.39, 2.35, and 2.32 Å, respectively) from A is highly
exergonic (ΔG = −57.9 kcal/mol).
In summary, we have successfully developed a novel transfer
oxygenative cyclization of diynes with DMSO catalyzed by
cationic Ru complexes. For diynes with terminal aryl groups,
[CpRu(AN)3]PF6 was the optimal catalyst, while those with
terminal alkyl groups were effectively catalyzed by the
corresponding Cp* complex. A mechanism for the formation
of bicyclic furans was proposed on the basis of the results
obtained by carrying out the stoichiometric reaction of a
ruthenacyclopentatriene complex with DMSO and by perform-
ing DFT calculations of model ruthenacycles. This novel
method is highly useful for the synthesis of bicyclic furans and
is complementary to previous monocyclic furan formations.
(4) (a) Yamamoto, Y.; Yamashita, K.; Nishiyama, H. Chem. Commun.
2011, 47, 1556. (b) Yamashita, K.; Nagashima, Y.; Yamamoto, Y.;
Nishiyama, H. Chem. Commun. 2011, 47, 11552.
(5) Zhang, M.; Jiang, H.-F.; Neumann, H.; Beller, M.; Dixneuf, P. H.
Angew. Chem., Int. Ed. 2009, 48, 1681.
(6) (a) Wang, A.; Jiang, H.; Xu, Q. Synlett 2009, 929. (b) Wen, Y.;
Zhu, S.; Jiang, H.; Wang, A.; Chen, Z. Synlett 2011, 1023.
(7) Muller, E. Synthesis 1974, 761.
̈
(8) For reviews of catalytic reactions using [Cp′RuLn] complexes,
see: (a) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001,
́
101, 2067. (b) Derien, S.; Dixneuf, P. H. J. Organomet. Chem. 2004,
689, 1382. (c) Schmid, R.; Kirchner, K. Eur. J. Inorg. Chem. 2004,
2609. (d) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem.,
Int. Ed. 2005, 44, 6630. (e) Varela, J. A.; Saa,
2009, 694, 143.
́
C. J. Organomet. Chem.
(9) The enhancement of a relevant reaction by addition of a protic
acid has been evidenced. See: (a) Zhang, M.; Jiang, H.; Dixneuf, P. H.
Adv. Synth. Catal. 2009, 351, 1488. Protonated ruthenacycles have
been analyzed by DFT calculations. See: (b) Le Paih, J.; Monnier, F.;
Derien, S.; Dixneuf, P. H.; Clot, E.; Eisenstein, O. J. Am. Chem. Soc.
́
2003, 125, 11964.
(10) Zhang, L.-Z.; Chen, C.-W.; Lee, C.-F.; Wu, C.-C.; Luh, T.-Y.
Chem. Commun. 2002, 2336.
(11) Casey, C. P.; Burkhardt, T. J.; Bunnell, C. A.; Calabrese, J. C. J.
Am. Chem. Soc. 1977, 99, 2127.
(12) Similar cyclizations of oxadienyl carbene complexes to give
furans were proposed: (a) Herndon, J. W.; Wang, H. J. Org. Chem.
1998, 63, 4564. (b) Chen, J.; Ma, S. Chem.Asian J. 2010, 5, 2415.
7663
dx.doi.org/10.1021/ja302868s | J. Am. Chem. Soc. 2012, 134, 7660−7663