properties of N-methoxyamine 8 (Scheme 1). In general,
the condensation of a highly nucleophilic amine derivative
with a carbonyl group tends to give a poorly electrophilic
iminium ion. However, the N-methoxyiminium ion 95,6
exhibited unexpectedly high electrophilicty despite the
high nucleophilicity of N-methoxyamine 8.7,8 Thus, the
condensation of 8 with ketone 1 could generate N-meth-
oxyiminium ion 9 with assistance of an acid, followed by
nucleophilic addition to the resulting iminium ion 9 to give
sterically hindered R-trisubstituted N-methoxyamine 10 in
a single step. In addition, the N-methoxy group was easily
removed with Zn in AcOH to give secondary amine 4.
Scheme 1. Synthesis of R-Trisubstituted Amines 4 or 7 from
Ketones 1
in the presence of a catalytic amount of Sc(OTf)3 (Table 1).9
The three-component reaction of N,N-disubstituted amine
12 is very challenging because of steric hindrance, which
suppresses the condensation with cyclohexanone 11. Indeed,
use of Cbz-protected amine 12a led to the generation of
tertiary alcohol 14 in 41% yield through the direct allylation
of ketone 11 (entry 1). N-Methyl-N-benzylamine 12b gave
neither R-trisubstituted amine 13b nor tertiary alcohol 14
(entry 2). On the contrary, the condensation of primary
N-benzylamine 12c with cyclohexanone 11, followed by
allylation, gave secondary amine 13c in low yield, probably
because allyltributylstannane did not possess sufficient nu-
cleophilicity for the imine (entry 3).10 N-Methoxyamine 12d
was then exposed to the same allylation conditions (entry 4).11
As we expected, N-methoxyamine 12d exhibited high
nucleophilicity and smoothly condensed with ketone 11
to generate a highly electrophilic N-methoxyiminium ion.
The allylation with allyltributylstannane then took place,
affording R-trisubstituted amine 13d in 85% yield, along
with a small amount of tertiary alcohol 14 in 7% yield. It is
noteworthy that ketone 11 and N-methoxyamine 12d were
used in an equal molar ratio.
Figure 1. Representative natural products containing R-trisub-
stituted amines.
The present investigation commenced with a three-com-
ponent allylation utilizing cyclohexanone 11, a variety of
N-substituted-N-benzylamines 12, and allyltributylstannane
(6) For selected examples on reactions via N-alkoxyiminium ions as
the key intermediates, see: (a) Hardegger, B.; Shatzmiller, S. Helv. Chim.
Acta 1976, 59, 2765–2767. (b) Plate, R.; van Hout, R. H. M.; Behm, H.;
Ottenheijm, H. C. J. J. Org. Chem. 1987, 52, 555–560. (c) Padwa, A.;
Dean, D. C. J. Org. Chem. 1990, 55, 405–406. (d) Hermkens, P. H. H.;
van Maarseveen, J. H.; Cobben, P. L. H. M.; Ottenheijm, H. C. J.;
Kruse, C. G.; Scheeren, H. W. Tetrahedron 1990, 46, 833–846. (e) Tiecco,
M.; Testaferri, L.; Tingoli, M.; Bagnoli, L. J. Chem. Soc., Chem.
Commun. 1995, 235–236. (f) McMills, M. C.; Wright, D. L.; Zubkowski,
J. D.; Valente, E. J. Tetrahedron Lett. 1996, 37, 7205–7208. (g) Grigg, R.;
Rankovic, Z.; Thoroughgood, M. Tetrahedron 2000, 56, 8025–8032. (h)
Yamashita, T.; Kawai, N.; Tokuyama, H.; Fukuyama, T. J. Am. Chem.
Soc. 2005, 127, 15038–15039. (i) Dondas, H. A.; Grigg, R.; Markandu,
J.; Perrior, T.; Suzuki, T.; Thibault, S.; Thomas, W. A.; Thornton-Pett,
M. Tetrahedron 2002, 58, 161–173. (j) Peng, Z.; Song, J.; Liao, W.; Ma,
R.; Chen, S.-H.; Li, G.; Ando, R. Lett. Org. Chem. 2006, 3, 455–458. (k)
Nemoto, H.; Ma, R.; Kawamura, T.; Kamiya, M.; Shibuya, M. J. Org.
Chem. 2006, 71, 6038–6043. (l) Zheng, X.; Wang, X.; Chang, J.; Zhao, K.
Synlett 2006, 3277–3283. (m) Nemoto, H.; Ma, R.; Moriguchi, H.;
Kawamura, T.; Kamiya, M.; Shibuya, M. J. Org. Chem. 2007, 72,
9850–9853. (n) Jackson, S. K.; Karadeolian, A.; Driega, A. B.; Kerr,
M. A. J. Am. Chem. Soc. 2008, 130, 4196–4201.
(7) Oxime ethers are known to be less electrophilic than the corre-
sponding imines; see: (a) Enders, D.; Reinhold, U. Tetrahedron:
Asymmetry 1997, 8, 1895–1946. (b) Bloch, R. Chem. Rev. 1998, 98,
1407–1438.
(8) When a solution of N-methoxybenzylamine 12d, cyclohexanone
11, and CDCl3 was treated with Sc(OTf)3, 1H NMR analysis showed
that 12d and the N-methoxyiminium ion i existed as a ratio of 1.1:1 in
equilibrium after 1 h. Enamine derivative ii was not detected during the
analysis. This result might support the high electrophilicity of the
N-methoxyiminium ions.
(9) For selected reviews on allylation to iminium intermediates, see:
(a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–2293. (b)
Puentes, C. O.; Kouznetsov, V. J. Heterocycl. Chem. 2002, 39, 595–614.
(10) The use of more reactive nucleophiles including a Grignard
reagent gave secondary amines in good yields, although these ap-
proaches were not compatible with sensitive functional groups. For
ꢀ
ꢀ
selected examples, see: (a) Bonjoch, J.; Diaba, F.; Puigbo, G.; Sole, D.;
Segarra, V.; Santamarıa, L.; Beleta, J.; Ryder, H.; Palacios, J.-M.
´
Bioorg. Med. Chem. 1999, 7, 2891–2897. (b) Wright, D. L.; Schulte,
J. P., II; Page, M. A. Org. Lett. 2000, 2, 1847–1850. (c) Varlamov, A.;
ꢀ
Kouznetsov, V.; Zubkov, F.; Chernyshev, A.; Shurupova, O.; Mendez,
L. Y. V.; Rodrıguez, A. P.; Castro, J. R.; Rosas-Romero, A. J. Synthesis
´
2002, 771–783. (d) Dhudshia, B.; Tiburcio, J.; Thadani, A. N. Chem.
Commun. 2005, 5551–5553. (e) Kropf, J. E.; Meigh, I. C.; Bebbington,
M. W. P.; Weinreb, S. M. J. Org. Chem. 2006, 71, 2046–2055. (f) Kaden,
S.; Reissig, H.-U. Org. Lett. 2006, 8, 4763–4766. (g) Prusov., E.; Maier,
M. E. Tetrahedron 2007, 63, 10486–10496.
(11) For selected examples on the three-component reaction with an
aldehyde and an N-alkoxyamine via an N-methoxyiminium ion, see:
Reference 6g 6k, and 6m. For selected examples on the three-component
radical reactions with an aldehyde and an N-alkoxyamine, see: (a)
Miyabe, H.; Ueda, M.; Naito, T. Synlett 2004, 1140–1157. (b) Cho, D. H.;
Jang, D. O. Chem. Commun. 2006, 5045–5047.
Org. Lett., Vol. 14, No. 8, 2012
2099