10.1002/anie.201813801
Angewandte Chemie International Edition
COMMUNICATION
[14] a) J.-W. Gu, Q.-Q. Min, L.-C. Yu, X. Zhang, Angew. Chem. Int. Ed.
2016, 55, 12270-12274; b) H.-L. Hua, B.-S. Zhang, Y.-T. He, Y.-F. Qiu,
J.-Y. Hu, Y.-C. Yang, Y.-M. Liang, Chem. Commun. 2016, 52, 10396-
10399; c) Y. Xiang, Y. Li, Y. Kuang, J. Wu, Chem. Eur. J. 2017, 23,
1032-1035; d) X. Nie, C. Cheng, G. Zhu, Angew. Chem. Int. Ed. 2017,
56, 1898-1902.
building blocks for modern organic synthesis and complements
the currently known carbonylation methods.
Acknowledgements
[15] a) S. Ge, W. Chaładaj, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136,
4149-4152; b) S. Ge, S. I. Arlow, M. G. Mormino, J. F. Hartwig, J. Am.
Chem. Soc. 2014, 136, 14401-14404; c) S. I. Arlow, J. F. Hartwig, J.
Am. Chem. Soc. 2017, 139, 16088-16091; d) Z. Ruan, S.-K. Zhang, C.
Zhu, P. N. Ruth, D. Stalke, L. Ackermann, Angew. Chem. Int. Ed. 2017,
56, 2045-2049.
This work is supported by the State of Mecklenburg-
Vorpommern. We thank the analytical team of LIKAT for their
kind support. J. Y thanks the Chinese Scholarship Council
(CSC) for financial support.
[16] a) T. Iida, R. Hashimoto, K. Aikawa, S. Ito, K. Mikami, Angew. Chem.
Int. Ed. 2012, 51, 9535-9538; b) K. Aikawa, S. Yoshida, D. Kondo, Y.
Asai, K. Mikami, Org. Lett. 2015, 17, 5108-5111.
Keywords: carbonylation • fluoroalkenes • difluoromethylated
esters • palladium• selectivity
[17] S. M. Banik, J. W. Medley, E. N. Jacobsen, Science 2016, 353, 51-54.
[18] a) T. Kégl, in Modern Carbonylation Methods, ed. L. Kollár, Wiley-VCH
Verlag GmbH & Co. KGaA, 2008, pp. 161-198; b) B. E. Ali, H. Alper, in
Transition Metals for Organic Synthesis, Wiley-VCH Verlag GmbH,
2008, pp. 113-132; c) R. Franke, D. Selent, A. Börner, Chem. Rev.
2012, 112, 5675-5732; d) A. Brennführer, H. Neumann, M. Beller,
ChemCatChem 2009, 1, 28-41; e) P. Kalck, M. Urrutigoïty, O. Dechy-
Cabaret, in Catalytic Carbonylation Reactions, ed. M. Beller, Springer
Berlin Heidelberg, 2006, vol. 18, ch. 18, pp. 97-123.
[1]
a) K. Mìller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886; b) W.
K. Hagmann, J. Med. Chem. 2008, 51, 4359-4369; c) Fluorine in
Medicinal Chemistry and Chemical Biology (Eds.: I. Ojima,), Wiley-
Blackwell, Chichester (UK), 2009; d) P. Kirsch, Modern Fluoroorganic
Chemistry, Wiley-VCH, Weinheim (Germany), 2013.
[2]
a) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem., Int. Ed. 2013, 52,
8214-8264; b) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308-319; (c) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320-330; d) C. Ni, M. Hu, J. Hu Chem. Rev. 2015, 115, 765-
825.
[19] G. Kiss, Chem. Rev. 2001, 101, 3435-3456.
[20] a) K. Dong, X. Fang, S. Gülak, R. Franke, A. Spannenberg, H.
Neumann, R. Jackstell, M. Beller, Nat. Commun. 2017, 8, 14117; b) J.
Liu, K. Dong, R. Franke, H. Neumann, R. Jackstell, M. Beller, J. Am.
Chem. Soc. 2018, 140, 10282-10288.
[3]
[4]
Y. Zafrani, D. Yeffet, G. Sod-Moriah, A. Berliner, D. Amir, D. Marciano,
E. Gershonov, S. Saphier, J. Med. Chem. 2017, 60, 797-804.
a) N. A. Meanwell, J. Med. Chem. 2011, 54, 2529-2591; b) G. K. S.
Prakash, M. Mandal, S. Schweizer, N. A. Petasis, G. A. Olah, J. Org.
Chem. 2002, 67, 3718-3723; c) Y. Li, J. Hu, Angew. Chem. Int. Ed.
2005, 44, 5882-5886..
[21] a) H. Li, K. Dong, H. Jiao, H. Neumann, R. Jackstell, M. Beller, Nat.
Chem. 2016, 8, 1159.
[22] a) L. Wu, Q. Liu, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2014,
53, 6310-6320; b) P. Hermange, A. T. Lindhardt, R. H. Taaning, K.
Bjerglund, D. Lupp, T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061-
6071; c) X. Ren, Z. Zheng, L. Zhang, Z. Wang, C. Xia, K. Ding, Angew.
Chem. Int. Ed. 2017, 56, 310-313; d) W. Ren, W. Chang, J. Dai, Y. Shi,
J. Li, Y. Shi, J. Am. Chem. Soc. 2016, 138, 14864-14867.
[5]
[6]
a) M. A. Chowdhury, K. R. A. Abdellatif, Y. Dong, D. Das, M. R. Suresh,
E. E. Knaus, J. Med. Chem. 2009, 52, 1525-1529.
F. Narjes, K. F. Koehler, U. Koch, B. Gerlach, S. Colarusso, C.
Steinkühler, M. Brunetti, S. Altamura, R. De Francesco, V. G. Matassa,
Biorg. Med. Chem. Lett. 2002, 12, 701-704.
[23] R. T. Thornbury, F. D. Toste, Angew. Chem. Int. Ed. 2016, 55, 11629-
11632.
[7]
[8]
J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432-2506.
[24] a) G. K. S. Prakash, Y. Wang, J. Hu, G. A. Olah, J. Fluorine Chem. 2005,
126, 1361-1367; b) Y. Zhao, W. Huang, L. Zhu, J. Hu, Org. Lett. 2010,
12, 1444-1447; c) J. Zheng, J.-H. Lin, J. Cai, J.-C. Xiao, Chem. Eur. J.
2013, 19, 15261-15266; d) S. Krishnamoorthy, J. Kothandaraman, J.
Saldana, G. K. S. Prakash, Eur. J. Org. Chem. 2016, 2016, 4965-4969.
[25] K. Dong, R. Sang, Z. Wei, J. Liu, R. Dühren, A. Spannenberg, H. Jiao,
H. Neumann, R. Jackstell, R. Franke, M. Beller, Chem. Sci. 2018, 9,
2510-2516.
a) J. Hu, W. Zhang, F. Wang, Chem. Commun., 2009, 7465-7478; b)
Y. Lu, C. Liu, Q.-Y. Chen, Curr. Org. Chem. 2015, 19, 1638-1650; c) D.
E. Yerien, S. Barata-Vallejo, A. Postigo, Chem. Eur. J. 2017, 23,
14676-14701; d) J. Rong, C. Ni, J. Hu, Asian J. Org. Chem. 2017, 6,
139-152.
[9]
a) P. S. Fier, J. F. Hartwig, Angew. Chem. Int. Ed. 2013, 52, 2092-
2095; b) L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 2013, 52,
12390-12394; c) V. V. Levin, A. A. Zemtsov, M. I. Struchkova, A. D.
Dilman, Org. Lett. 2013, 15, 917-919; d) G. Liu, X. Wang, X.-H. Xu, X.
Lu, E. Tokunaga, S. Tsuzuki, N. Shibata, Org. Lett. 2013, 15, 1044-
1047.
[26] a) W. Clegg, G. R. Eastham, M. R. J. Elsegood, R. P. Tooze, X. L.
Wang, K. Whistonc, Chem. Commun., 1999, 1877-1878; b) A. A. N.
Magro, L. M. Robb, P. J. Pogorzelec, A. M. Z. Slawin, G. R. Easthamb,
D. J. Cole-Hamilton, Chem. Sci. 2010, 1, 723–730; c) P. Roesle, L.
Caporaso, M. Schnitte, V. Goldbach, L. Cavallo, S. Mecking, J. Am.
Chem. Soc., 2014, 136, 16871-16881.
[10] G. K. S. Prakash, S. K. Ganesh, J.-P. Jones, A. Kulkarni, K. Masood, J.
K. Swabeck, G. A. Olah, Angew. Chem. Int. Ed. 2012, 51, 12090-
12094; b) P. S. Fier, J. F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524-
5527; c) X. Shen, W. Zhang, C. Ni, Y. Gu, J. Hu, J. Am. Chem. Soc.
2012, 134, 16999-17002; d) C. Matheis, K. Jouvin, L. J. Goossen, Org.
Lett. 2014, 16, 5984-5987.
[27] For more details of the mechanistic studies, see Supporting Information.
[11] a) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter, D. D. Dixon,
M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem. Soc. 2012,
134, 1494-1497; b) X.-J. Tang, W. R. Dolbier, Angew. Chem. Int. Ed.
2015, 54, 4246-4249; c) Z. He, P. Tan, C. Ni, J. Hu, Org. Lett. 2015, 17,
1838-1841; d) Q.-Y. Lin, X.-H. Xu, K. Zhang, F.-L. Qing, Angew. Chem.
Int. Ed. 2016, 55, 1479-1483.
[12] a) Z. Feng, Q.-Q. Min, X.-P. Fu, L. An, X. Zhang, Nat. Chem. 2017, 9,
918, Nat. Chem. 2017, 9, 918; b) Z. Feng, Q.-Q. Min, X. Zhang, Org.
Lett. 2016, 18, 44-47.
[13] a) Z. Feng, Y.-L. Xiao, X. Zhang, Acc. Chem. Res. 2018, 51, 2264-
2278; b) Z. Feng, Q.-Q. Min, Y.-L. Xiao, B. Zhang, X. Zhang, Angew.
Chem. Int. Ed. 2014, 53, 1669-1673; d) Y.-L. Xiao, W.-H. Guo, G.-Z. He,
Q. Pan, X. Zhang, Angew. Chem. Int. Ed. 2014, 53, 9909-9913.
This article is protected by copyright. All rights reserved.